-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add vit with patch dropout, fully embrace structured dropout as multi…
…ple papers are now corroborating each other
- Loading branch information
1 parent
2f87c0c
commit 89e1996
Showing
3 changed files
with
163 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import torch | ||
from torch import nn | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
# classes | ||
|
||
class PatchDropout(nn.Module): | ||
def __init__(self, prob): | ||
super().__init__() | ||
assert 0 <= prob < 1. | ||
self.prob = prob | ||
|
||
def forward(self, x): | ||
if not self.training or self.prob == 0.: | ||
return x | ||
|
||
b, n, _, device = *x.shape, x.device | ||
|
||
batch_indices = torch.arange(b, device = device) | ||
batch_indices = rearrange(batch_indices, '... -> ... 1') | ||
num_patches_keep = max(1, int(n * (1 - self.prob))) | ||
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices | ||
|
||
return x[batch_indices, patch_indices_keep] | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
project_out = not (heads == 1 and dim_head == dim) | ||
|
||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.dropout = nn.Dropout(dropout) | ||
|
||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) if project_out else nn.Identity() | ||
|
||
def forward(self, x): | ||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | ||
|
||
attn = self.attend(dots) | ||
attn = self.dropout(attn) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
class ViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., patch_dropout = 0.25): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
|
||
self.patch_dropout = PatchDropout(patch_dropout) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.pool = pool | ||
self.to_latent = nn.Identity() | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
x += self.pos_embedding | ||
|
||
x = self.patch_dropout(x) | ||
|
||
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) | ||
|
||
x = torch.cat((cls_tokens, x), dim=1) | ||
x = self.dropout(x) | ||
|
||
x = self.transformer(x) | ||
|
||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] | ||
|
||
x = self.to_latent(x) | ||
return self.mlp_head(x) |