Skip to content

Commit

Permalink
Merge pull request #1082 from Venkateeshh/main
Browse files Browse the repository at this point in the history
Update README.md with latest enhancements, new models, use cases
  • Loading branch information
doberst authored Oct 28, 2024
2 parents 600f8d8 + fd5219b commit 40c73fa
Showing 1 changed file with 55 additions and 15 deletions.
70 changes: 55 additions & 15 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -622,36 +622,76 @@ if __name__ == "__main__":
```
</details>

## 🔥 Latest Enhancements and Features 🔥

## 🔥 What's New? 🔥
### Model Capabilities & Benchmarks

-**Benchmarking Small Model Capabilities** - see [benchmark results](https://medium.com/@darrenoberst/best-small-language-models-for-accuracy-and-enterprise-use-cases-benchmark-results-cf71964759c8) and [model_ranking example](fast_start/agents/agents-15-get_model_benchmarks.py)
- **Benchmarking Small Model Capabilities**
Explore the latest benchmark results for small language models focusing on accuracy and enterprise use cases.
- [Read benchmark results](https://medium.com/@darrenoberst/best-small-language-models-for-accuracy-and-enterprise-use-cases-benchmark-results-cf71964759c8)
- [Example code for model ranking](fast_start/agents/agents-15-get_model_benchmarks.py)

-**Using Qwen2 Models for RAG, Function Calling and Chat** - get started in minutes - see [example](https://github.com/llmware-ai/llmware/tree/main/examples/Models/using-qwen2-models.py)
### New Models and Functionality

-**New Phi-3 Function Calling Models** - get started in minutes - see [example](https://github.com/llmware-ai/llmware/tree/main/examples/Models/using-phi-3-function-calls.py)
- **Qwen2 Models for RAG, Function Calling, and Chat**
Start using Qwen2 models quickly with resources for Retrieval-Augmented Generation (RAG), function calling, and chat functionalities.
- [Quickstart example](https://github.com/llmware-ai/llmware/tree/main/examples/Models/using-qwen2-models.py)

-**BizBot - RAG + SQL Local Chatbot** - see [example](https://github.com/llmware-ai/llmware/tree/main/examples/Use_Cases/biz_bot.py) and [video](https://youtu.be/4nBYDEjxxTE?si=o6PDPbu0PVcT-tYd)
- **Phi-3 Function Calling Models**
Get started in minutes with Phi-3 models designed for function calling.
- [Quickstart example](https://github.com/llmware-ai/llmware/tree/main/examples/Models/using-phi-3-function-calls.py)

**Lecture Tool Use Case - ask questions to a voice recording** - see [lecture_tool](https://github.com/llmware-ai/llmware/blob/main/examples/Use_Cases/lecture_tool/)
### New Use Cases & Applications

-**Web Services with Agent Calls for Financial Research** - end-to-end scenario - [video](https://youtu.be/l0jzsg1_Ik0?si=hmLhpT1iv_rxpkHo) and [example](examples/Use_Cases/web_services_slim_fx.py)
- **BizBot: RAG + SQL Local Chatbot**
Implement a local chatbot for business intelligence using RAG and SQL.
- [Code example](https://github.com/llmware-ai/llmware/tree/main/examples/Use_Cases/biz_bot.py) | [Demo video](https://youtu.be/4nBYDEjxxTE?si=o6PDPbu0PVcT-tYd)

-**Voice Transcription with WhisperCPP** - [getting_started](examples/Models/using-whisper-cpp-getting-started.py), [using_sample_files](examples/Models/using-whisper-cpp-sample-files.py), and [analysis_use_case](examples/Use_Cases/parsing_great_speeches.py) with [great_speeches_video](https://youtu.be/5y0ez5ZBpPE?si=KVxsXXtX5TzvlEws)
- **Lecture Tool**
Enables Q&A on voice recordings for education and lecture analysis.
- [Lecture tool code](https://github.com/llmware-ai/llmware/blob/main/examples/Use_Cases/lecture_tool/)

-**Phi-3 GGUF Streaming Local Chatbot with UI** - setup your own Phi-3-gguf chatbot on your laptop in minutes - [example](examples/UI/gguf_streaming_chatbot.py) with [video](https://youtu.be/gzzEVK8p3VM?si=8cNn_do0oxSzCEnM)
- **Web Services for Financial Research**
An end-to-end example demonstrating web services with agent calls for financial research.
- [Demo video](https://youtu.be/l0jzsg1_Ik0?si=hmLhpT1iv_rxpkHo) | [Code example](examples/Use_Cases/web_services_slim_fx.py)

-**Natural Language Query to CSV End to End example** - using the slim-sql model - [video](https://youtu.be/z48z5XOXJJg?si=V-CX1w-7KRioI4Bi) and [example](examples/SLIM-Agents/text2sql-end-to-end-2.py) and now using Custom Tables on Postgres [example](https://github.com/llmware-ai/llmware/tree/main/examples/Use_Cases/agent_with_custom_tables.py)
### Audio & Text Processing

-**Multi-Model Agents with SLIM models** - multi-step Agents with SLIMs on CPU - [video](https://www.youtube.com/watch?v=cQfdaTcmBpY) - [example](examples/SLIM-Agents)
- **Voice Transcription with WhisperCPP**
Start transcription projects with WhisperCPP, featuring tools for sample file usage and famous speeches.
- [Getting started guide](examples/Models/using-whisper-cpp-getting-started.py) | [Parsing great speeches](examples/Use_Cases/parsing_great_speeches.py) | [Demo video](https://youtu.be/5y0ez5ZBpPE?si=KVxsXXtX5TzvlEws)

-**OCR Embedded Document Images Example** - systematically extract text from images embedded in documents [example](examples/Parsing/ocr_embedded_doc_images.py)
- **Natural Language Query to CSV**
Convert natural language queries to CSV with Slim-SQL, supporting custom Postgres tables.
- [Demo video](https://youtu.be/z48z5XOXJJg?si=V-CX1w-7KRioI4Bi) | [End-to-end example](examples/SLIM-Agents/text2sql-end-to-end-2.py) | [Custom table usage](https://github.com/llmware-ai/llmware/tree/main/examples/Use_Cases/agent_with_custom_tables.py)

-**Enhanced Parser Functions for PDF, Word, Powerpoint and Excel** - new text-chunking controls and strategies, extract tables, images, header text - [example](examples/Parsing/pdf_parser_new_configs.py)
### Multi-Model Agents

- **Multi-Model Agents with SLIM**
Use SLIM models on CPU for multi-step agents in complex workflows.
- [Demo video](https://www.youtube.com/watch?v=cQfdaTcmBpY) | [Example directory](examples/SLIM-Agents)

### Document & OCR Processing

- **OCR Embedded Document Images**
Extract text systematically from images embedded in documents for enhanced document processing.
- [OCR example](examples/Parsing/ocr_embedded_doc_images.py)

- **Enhanced Document Parsing for PDFs, Word, PowerPoint, and Excel**
Improved text-chunking controls, table extraction, and content parsing.
- [Parsing example](examples/Parsing/pdf_parser_new_configs.py)

### Deployment & Optimization

- **Agent Inference Server**
Set up an inference server for multi-model agents to optimize deployments.
- [Server setup example](https://github.com/llmware-ai/llmware/tree/main/examples/SLIM-Agents/agent_api_endpoint.py)

- **Optimizing Accuracy of RAG Prompts**
Tutorials for tuning RAG prompt settings for increased accuracy.
- [Settings example](examples/Models/adjusting_sampling_settings.py) | Videos: [Part I](https://youtu.be/7oMTGhSKuNY?si=14mS2pftk7NoKQbC), [Part II](https://youtu.be/iXp1tj-pPjM?si=T4teUAISnSWgtThu)

-**Agent Inference Server** - set up multi-model Agents over Inference Server [example](https://github.com/llmware-ai/llmware/tree/main/examples/SLIM-Agents/agent_api_endpoint.py)

-**Optimizing Accuracy of RAG Prompts** - check out [example](examples/Models/adjusting_sampling_settings.py) and videos - [part I](https://youtu.be/7oMTGhSKuNY?si=14mS2pftk7NoKQbC) and [part II](https://youtu.be/iXp1tj-pPjM?si=T4teUAISnSWgtThu)

## 🌱 Getting Started

Expand Down

0 comments on commit 40c73fa

Please sign in to comment.