Skip to content
/ Cirq Public
forked from quantumlib/Cirq

A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.

License

Notifications You must be signed in to change notification settings

liye0005/Cirq

 
 

Repository files navigation

Cirq

Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running them against quantum computers and simulators.

Build Status

Installation

Follow these instructions.

Hello Qubit

A simple example to get you up and running:

import cirq

# Pick a qubit.
qubit = cirq.GridQubit(0, 0)

# Create a circuit
circuit = cirq.Circuit.from_ops(
    cirq.X(qubit)**0.5,  # Square root of NOT.
    cirq.measure(qubit, key='m')  # Measurement.
)
print("Circuit:")
print(circuit)

# Simulate the circuit several times.
simulator = cirq.google.XmonSimulator()
result = simulator.run(circuit, repetitions=20)
print("Results:")
print(result)

Example output:

Circuit:
(0, 0): ───X^0.5───M('m')───
Results:
m=11000111111011001000

Documentation

See here or jump into the tutorial.

Contributing

We welcome contributions. Please follow these guidelines.

We use Github issues for tracking requests and bugs. Please post questions to the Quantum Computing Stack Exchange with a 'cirq' tag.

See Also

For those interested in using quantum computers to solve problems in chemistry and materials science, we encourage exploring OpenFermion and its sister library for compiling quantum simulation algorithms in Cirq, OpenFermion-Cirq.

Disclaimer

Copyright 2018 The Cirq Developers. This is not an official Google product.

About

A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.8%
  • Shell 1.2%