Skip to content

Commit

Permalink
Release of 0.4.0 (#78)
Browse files Browse the repository at this point in the history
Release of 0.4.0
  • Loading branch information
njusu authored Jul 15, 2022
1 parent 9fb670b commit 5a6bcec
Show file tree
Hide file tree
Showing 176 changed files with 92,696 additions and 2,113 deletions.
4 changes: 2 additions & 2 deletions AUTHORS.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,18 +6,18 @@ Development Leads
-----------------

* Reza Hosseini <[email protected]> (Core Algorithms and Models)
* Albert Chen <[email protected]> (Modeling Framework, Templates, Auto-tuning)
* Albert Chen <[email protected]> (Modeling Framework, Templates, Auto-Tuning)

Authors
-------
* Reza Hosseini
* Albert Chen
* Kaixu Yang
* Sayan Patra
* Yi Su
* Rachit Arora

Other Contributors
------------------
* Saad Eddin Al Orjany
* Rachit Kumar
* Yi Su
32 changes: 32 additions & 0 deletions HISTORY.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,38 @@
History
=======

0.4.0 (2022-07-15)
------------------

* New features and methods
* @Reza Hosseini: Forecast interpretability. Forecasts can now be broken down to grouped components: trend, seasonality, events, autoregression, regressors, intercept, etc.
* @Sayan Patra: Enhanced components plot. Now supports autoregression, lagged regressors, residuals; adds support for centering.
* @Kaixu Yang: Auto model components. (1) seasonality inferrer (2) holiday inferrer (3) automatic growth.
* @Kaixu Yang: Lag-based estimator. Supports lag-based forecasts such as week-over-week.
* @Reza Hosseini: Fast simulation option. Provides a better accuracy and speed for mean prediction when simulation is used in autoregression.
* @Kaixu Yang: Quantile regression option for Silverkite `fit_algorithm`.

* New model templates
* @Kaixu Yang: AUTO. Automatically chooses templates based on the data frequency, forecast horizon and evaluation configs.
* @Reza Hosseini, @Kaixu Yang: SILVERKITE_MONTHLY - a SimpleSilverkite template designed for monthly time series.
* @Kaixu Yang: SILVERKITE_WOW. Uses Silverkite to model seasonality, growth and holiday effects, and then uses week-over-week to fit the residuals. The final prediction is the total of the two models.

* New datasets
* 4 hourly datasets: Solar Power, Wind Power, Electricity, San Francisco Bay Area Traffic.
* 1 daily dataset: Bitcoin Transactions.
* 2 monthly datasets: Sunspot, FRED House Supply.

* Library enhancements and bug fixes
* The SILVERKITE template has been updated to include automatic autoregression and changepoint detection.
* Renamed `SilverkiteMultistageEstimator` to `MultistageForecastEstimator`.
* Renamed the normalization method "min_max" to "zero_to_one".
* @Reza Hosseini: Added normalization methods: "minus_half_to_half", "zero_at_origin".
* @Albert Chen: Updated tutorials.
* @Yi Su: Upgraded fbprophet 0.5 to prophet 1.0.
* @Yi Su: Upgraded holidays to 0.13.
* @Albert Chen @Kaixu Yang @Yi Su: Speed optimization for Silverkite algorithms.
* @Albert Chen @Reza Hosseini @Kaixu Yang @Sayan Patra @Yi Su: Other library enhancements and bug fixes.

0.3.0 (2021-12-14)
------------------

Expand Down
4 changes: 4 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
sys.path.insert(0, os.path.abspath(os.path.join(".."))) # adds path to find greykite folder during doc build.

from sphinx_gallery.sorting import FileNameSortKey

from greykite.common.sphinx_plotly import plotly_sg_scraper

# -- Path setup --------------------------------------------------------------
Expand Down Expand Up @@ -224,11 +225,13 @@
'examples_dirs': [
'nbpages/quickstart',
'nbpages/tutorials',
'nbpages/templates'
],
# where to save gallery generated output (added to gitignore)
'gallery_dirs': [
'gallery/quickstart',
'gallery/tutorials',
'gallery/templates'
],
'within_subsection_order': FileNameSortKey, # alphanumeric order within a gallery
'line_numbers': True,
Expand All @@ -243,6 +246,7 @@
},
'image_scrapers': image_scrapers,
# 'default_thumb_file': default_thumb_file,
'capture_repr': ('_repr_html_', '__repr__'),
}

# Napoleon settings
Expand Down
Binary file added docs/figures/multistage_forecast.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ Welcome to Greykite! View the contents to get started.

gallery/quickstart/index
gallery/tutorials/index
gallery/templates/index

.. toctree::
:maxdepth: 1
Expand Down
23 changes: 12 additions & 11 deletions docs/nbpages/quickstart/0100_simple_forecast.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,17 +54,18 @@
# %%
# Create a forecast
# -----------------
# You can pick the ``PROPHET`` or ``SILVERKITE``
# forecasting model template. (see :doc:`/pages/stepbystep/0100_choose_model`).
# You can choose from many available
# models (see :doc:`/pages/stepbystep/0100_choose_model`).
#
# In this example, we use ``SILVERKITE``.
# You may also use ``PROPHET`` to see how a third-party library
# is leveraged in the same framework.
# In this example, we choose the "AUTO" model template,
# which uses the Silverkite algorithm with automatic parameter configuration
# given the input data frequency, forecast horizon and evaluation configs.
# We recommend starting with the "AUTO" template for most use cases.
forecaster = Forecaster() # Creates forecasts and stores the result
result = forecaster.run_forecast_config( # result is also stored as `forecaster.forecast_result`.
df=df,
config=ForecastConfig(
model_template=ModelTemplateEnum.SILVERKITE.name,
model_template=ModelTemplateEnum.AUTO.name,
forecast_horizon=365, # forecasts 365 steps ahead
coverage=0.95, # 95% prediction intervals
metadata_param=metadata
Expand Down Expand Up @@ -207,10 +208,10 @@
#
# See the following guides:
#
# * :doc:`/gallery/quickstart/0200_changepoint_detection`
# * :doc:`/gallery/quickstart/0300_seasonality`
# * :doc:`/gallery/quickstart/0400_model_summary`
# * :doc:`/gallery/quickstart/0500_grid_search`
# * :doc:`/gallery/quickstart/01_exploration/0100_changepoint_detection`
# * :doc:`/gallery/quickstart/01_exploration/0300_seasonality_plots`
# * :doc:`/gallery/quickstart/02_interpretability/0100_model_summary`
# * :doc:`/gallery/quickstart/03_benchmark/0100_grid_search`
#
# For example, for this dataset, you could add changepoints to
# handle the change in trend around 2014 and avoid the overprediction
Expand All @@ -228,5 +229,5 @@
# For details about the model templates and how to set model
# components, see the following guides:
#
# * :doc:`/gallery/tutorials/0200_templates`
# * :doc:`/gallery/templates/0100_template_overview`
# * :doc:`/pages/stepbystep/0000_stepbystep`
Loading

0 comments on commit 5a6bcec

Please sign in to comment.