Skip to content

Commit

Permalink
readme changed
Browse files Browse the repository at this point in the history
  • Loading branch information
MarcusMNoack committed Dec 15, 2023
1 parent eb81c6b commit f0fd231
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
[comment]: <> (Hiding maintainibility score while starting to address issues)


gpCAM [gpcam.lblb.gov](https://gpcam.lbl.gov/home) is an API and software designed to make advanced Gaussian Process function approximation and autonomous data acquisition/Bayesian Optimization for experiments and simulations more accurate, faster, simpler, and more widely available. The tool is based on a flexible and powerful Gaussian process regression at the core. The flexibility stems from the modular design of gpCAM which allows the user to implement and import their own Python functions to customize and control almost every aspect of the software. That makes it possible to easily tune the algorithm to account for various kinds of physics and other domain knowledge and to identify and find interesting features, in Euclidean and non-Euclidean spaces. A specialized function optimizer in gpCAM can take advantage of HPC architectures for fast analysis time and reactive autonomous data acquisition. gpCAM broke a 2019 record for the largest exact GP ever run! Below you can see a simple example of how to set up an autonomous experimentation loop.
gpCAM [gpcam.lbl.gov](https://gpcam.lbl.gov/home) is an API and software designed to make advanced Gaussian Process function approximation and autonomous data acquisition/Bayesian Optimization for experiments and simulations more accurate, faster, simpler, and more widely available. The tool is based on a flexible and powerful Gaussian process regression at the core. The flexibility stems from the modular design of gpCAM which allows the user to implement and import their own Python functions to customize and control almost every aspect of the software. That makes it possible to easily tune the algorithm to account for various kinds of physics and other domain knowledge and to identify and find interesting features, in Euclidean and non-Euclidean spaces. A specialized function optimizer in gpCAM can take advantage of HPC architectures for fast analysis time and reactive autonomous data acquisition. gpCAM broke a 2019 record for the largest exact GP ever run! Below you can see a simple example of how to set up an autonomous experimentation loop.


## Usage
Expand Down

0 comments on commit f0fd231

Please sign in to comment.