Skip to content

Releases: lanl-ansi/MathOptAI.jl

v0.1.7

17 Jan 01:01
eec3ace
Compare
Choose a tag to compare

MathOptAI v0.1.7

Diff since v0.1.6

Merged pull requests:

Closed issues:

  • Don't rely on out_features to get output dimension of PytorchModel (#165)

v0.1.6

07 Nov 00:49
7496eec
Compare
Choose a tag to compare

MathOptAI v0.1.6

Diff since v0.1.5

Merged pull requests:

  • [docs] clarify instructions to load PythonCall (#163) (@odow)
  • Prep for v0.1.6 (#164) (@odow)

Closed issues:

  • Failed to reproduce the PytorchModel examples (#162)

v0.1.5

05 Nov 21:38
42017ae
Compare
Choose a tag to compare

MathOptAI v0.1.5

Diff since v0.1.4

Merged pull requests:

v0.1.4

25 Oct 02:40
80c0d43
Compare
Choose a tag to compare

MathOptAI v0.1.4

Diff since v0.1.3

Merged pull requests:

  • Add bound constraints to the Formulation object (#155) (@odow)
  • [docs] improvements to the docstrings (#156) (@odow)
  • [docs] fix various typos (#157) (@odow)
  • Prep for v0.1.4 (#158) (@odow)

v0.1.3

24 Oct 03:30
296e206
Compare
Choose a tag to compare

MathOptAI v0.1.3

Diff since v0.1.2

Merged pull requests:

  • Delete .github/workflows/documentation-deploy.yml (#150) (@odow)
  • [docs] improve manual for NN extensions (#152) (@odow)
  • Fix documentation link in README.md (#153) (@odow)
  • Prep for v0.1.3 (#154) (@odow)

Closed issues:

  • Review feedback (#82)
  • Tag did not trigger documentation build (#145)
  • [docs] improve manual sections (#151)

v0.1.2

23 Oct 00:52
5904f2c
Compare
Choose a tag to compare

MathOptAI v0.1.2

Diff since v0.1.1

Merged pull requests:

v0.1.1

22 Oct 22:12
8409473
Compare
Choose a tag to compare

MathOptAI v0.1.1

Diff since v0.1.0

Merged pull requests:

  • Update installation instructions for registered package (#141) (@odow)
  • Create documentation-deploy.yml (#146) (@odow)
  • Prep for v0.1.1 (#147) (@odow)

v0.1.0

22 Oct 07:13
c602d43
Compare
Choose a tag to compare

MathOptAI v0.1.0

Merged pull requests:

  • Add package skeleton and a basic implementation of LinearRegression (#2) (@odow)
  • Add GLM package extension (#4) (@odow)
  • Use Predictor instead of Model to distinguish from optimization model (#5) (@odow)
  • Add support for LogisticRegression (#6) (@odow)
  • Add docstrings (#7) (@odow)
  • Add UnivariateNormalDistribution (#8) (@odow)
  • Add preliminary NN support (#9) (@odow)
  • Remove add_predictor! (#10) (@odow)
  • Propagate variable bounds where possible (#11) (@odow)
  • Pause actions until repo is open-sourced (#12) (@odow)
  • Simplify to make extensions implement add_predictor (#13) (@odow)
  • Add test for relu kwarg (#14) (@odow)
  • Improve variable bound propagation in ReLU layers (#15) (@odow)
  • Add Omelette.ReLU (#17) (@odow)
  • Test and fix doctests (#18) (@odow)
  • Add Sigmoid, SoftPlus, and Tanh layers (#19) (@odow)
  • Fix test_GLM.jl (#20) (@odow)
  • Support other activation functions in Lux extension (#21) (@odow)
  • Tweak GLM logistic regression layer (#22) (@odow)
  • Rename to MathOptAI.jl (#23) (@odow)
  • Use predictor consistently instead of model (#24) (@odow)
  • Add Flux.jl extension (#25) (@odow)
  • Improve extension docstrings (#26) (@odow)
  • Rename LinearRegression to Affine (#28) (@odow)
  • Remove LogisticRegression predictor (#29) (@odow)
  • Allow non-variable input vectors (#30) (@odow)
  • Add matrix input/output method for add_predictor (#31) (@odow)
  • Add StatsModels extension (#32) (@odow)
  • Make DataFrames a weakdep (#33) (@odow)
  • Fix code highlighting (#34) (@odow)
  • Switch to LANL's BSD license (#36) (@odow)
  • [docs] add MNIST tutorial (#37) (@odow)
  • Add initial skeleton of the documentation (#38) (@odow)
  • Rename added variables to moai_ (#39) (@odow)
  • Add student ennrollment tutorial (#40) (@odow)
  • Add SoftMax predictor (#41) (@odow)
  • [docs] add manual section (#42) (@odow)
  • Add kwarg option to extension methods (#46) (@odow)
  • Fix Flux Float32 warning (#47) (@odow)
  • [docs] add design principles (#48) (@odow)
  • Remove usage of Lux.Experimental (#49) (@odow)
  • Fix formatting (#50) (@odow)
  • Fix various docstrings (#51) (@odow)
  • Add logo (#52) (@odow)
  • [docs] update mnist tutorial (#53) (@odow)
  • Add BinaryDecisionTree (#54) (@odow)
  • [docs] fix BinaryDecisionTree docstring (#55) (@odow)
  • [docs] add docstrings for extensions (#56) (@odow)
  • Standardize naming of test modules (#57) (@odow)
  • Add tests for DecisionTreeExt (#58) (@odow)
  • [docs] add dimension colum to predictor table (#59) (@odow)
  • Add AbstractGPsExt (#60) (@odow)
  • Fix test_DecisionTree for points near breakpoints (#61) (@odow)
  • Remove UnivariateNormalDistribution in favor of Quantile (#62) (@odow)
  • [docs] update docs with new extensions (#63) (@odow)
  • Update README.md (#64) (@odow)
  • Add PytorchModel and tutorial (#69) (@odow)
  • Add ReducedSpace{<:AbstractPredictor} layer (#72) (@odow)
  • Fix tests for update to MOI variable ordering (#73) (@odow)
  • Add reduced_space option for PyTorchModel predictor (#76) (@Robbybp)
  • Add methods for show(io::IO, ::AbstractPredictor) (#77) (@odow)
  • Add build_predictor (#78) (@odow)
  • Add CondaPkg to test/Project.toml (#79) (@odow)
  • [breaking] return a formulation object (#80) (@odow)
  • Various miscellaneous fixes (#81) (@odow)
  • Relax type restrictions to support JuMP.AbstractModel (#83) (@odow)
  • Allow nested ReducedSpace predictors (#84) (@odow)
  • Various documentation improvements (#85) (@odow)
  • [docs] add more design principles and add PyTorch manual page (#86) (@odow)
  • Fix deprecation warning in tests (#88) (@odow)
  • Add Scale predictor (#89) (@odow)
  • [docs] remove Scaling section from design_principles.md (#91) (@odow)
  • [docs] add inputs are Vectors to design principles (#93) (@odow)
  • Fix typos in Scale doctest (#94) (@odow)
  • Fix MethodError with unsupported layers in (F)lux (#95) (@odow)
  • Add GrayBox predictor (#96) (@odow)
  • Fix formatting in src/predictors/Scale.jl (#97) (@odow)
  • Add test/test_PythonCall.jl (#98) (@odow)
  • [docs] update sources of inspiration (#99) (@odow)
  • Add Hessian support to GrayBox (#100) (@odow)
  • [docs] fix doc build and avoid segfault via PythonCall (#103) (@odow)
  • [docs] add DecisionTree tutorial, tweak other docs (#104) (@odow)
  • Add a tutorial for Lux (#105) (@odow)
  • [docs] minor tweaks to the documentation (#106) (@odow)
  • s/Pytorch/PyTorch/ (#107) (@odow)
  • Add tutorial for AbstractGPs (#108) (@odow)
  • Add support for nn.Softplus layer in PyTorch (#111) (@odow)
  • Add instructions for non-conda python environment (#113) (@Robbybp)
  • Support beta parameter in SoftPlus (#114) (@Robbybp)
  • Fix typo in SoftMax docs (#115) (@Robbybp)
  • Tweak LICENSE to match wording from LANL (#117) (@odow)
  • Add GitHub actions (#118) (@odow)
  • Update README.md to mention project code (#119) (@odow)
  • Clarify relationship to OMLT in README (#120) (@odow)
  • Add documentation to CI (#121) (@odow)
  • Run GitHub actions CI on pushes to main (#122) (@odow)
  • Add badges to README (#123) (@odow)
  • Add CODECOV_TOKEN to Github Actions (#124) (@odow)
  • Build documentation on push to main (#125) (@odow)
  • Add documentation link to the README (#126) (@odow)
  • Make the tests less flakey (#128) (@odow)
  • Improve code coverage (#129) (@odow)
  • Improve code coverage (#130) (@odow)
  • Add doc_cleanup to GitHub actions (#132) (@odow)
  • Update tests to use Julia v1.11 (#133) (@odow)
  • Update codecov badge in README (#134) (@odow)
  • Remove explicit mention of Mo'ai (#135) (@odow)
  • Install torch in GitHub actions (#136) (@odow)
  • Add installation instructions to the README (#137) (@odow)
  • Fix implied variable bounds in ReLU (#138) (@odow)

Closed issues:

  • MVP planning (#1)
  • Neural networks (#3)
  • Logistic layer (#16)
  • GLM.jl and DataFrames.jl (#27)
  • Add a way to override layer choices (#35)
  • Add GradientBoostedTrees (#43)
  • Add GaussianProcess (#44)
  • Tensorflow JSON (#65)
  • [breaking] return config struct from each layer (#67)
  • Add support for PyTorch (#68)
  • Support reduced-space formulation (#70)
  • Add a way to return predictor from extensions (#74)
  • Doctests fail if CondaPkg is not installed (#75)
  • Add OffsetScaling predictor (#87)
  • [GrayBox] add Hessian support (#90)
  • MOI Hessian evaluation is slow with reduced-space predictors (#102)
  • Add soft plus layer for torch (#110)
  • Threading and PyTorch (#116)
  • Tests are flakey (#127)
  • Add PyTorch to GitHub actions (#131)