Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: fix links #1748

Merged
merged 3 commits into from
Sep 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# 🦜🕸️LangGraph

Check notice on line 1 in README.md

View workflow job for this annotation

GitHub Actions / benchmark

Benchmark results

......................................... fanout_to_subgraph_10x: Mean +- std dev: 55.8 ms +- 1.1 ms ......................................... fanout_to_subgraph_10x_sync: Mean +- std dev: 50.4 ms +- 3.1 ms ......................................... fanout_to_subgraph_10x_checkpoint: Mean +- std dev: 74.2 ms +- 1.5 ms ......................................... fanout_to_subgraph_10x_checkpoint_sync: Mean +- std dev: 77.0 ms +- 0.7 ms ......................................... fanout_to_subgraph_100x: Mean +- std dev: 530 ms +- 11 ms ......................................... fanout_to_subgraph_100x_sync: Mean +- std dev: 470 ms +- 6 ms ......................................... fanout_to_subgraph_100x_checkpoint: Mean +- std dev: 735 ms +- 23 ms ......................................... fanout_to_subgraph_100x_checkpoint_sync: Mean +- std dev: 741 ms +- 9 ms ......................................... react_agent_10x: Mean +- std dev: 38.1 ms +- 0.7 ms ......................................... react_agent_10x_sync: Mean +- std dev: 29.3 ms +- 0.2 ms ......................................... react_agent_10x_checkpoint: Mean +- std dev: 51.9 ms +- 1.7 ms ......................................... react_agent_10x_checkpoint_sync: Mean +- std dev: 38.6 ms +- 0.7 ms ......................................... react_agent_100x: Mean +- std dev: 410 ms +- 16 ms ......................................... react_agent_100x_sync: Mean +- std dev: 336 ms +- 15 ms ......................................... react_agent_100x_checkpoint: Mean +- std dev: 976 ms +- 21 ms ......................................... react_agent_100x_checkpoint_sync: Mean +- std dev: 888 ms +- 22 ms ......................................... wide_state_25x300: Mean +- std dev: 19.9 ms +- 0.3 ms ......................................... wide_state_25x300_sync: Mean +- std dev: 12.0 ms +- 0.2 ms ......................................... wide_state_25x300_checkpoint: Mean +- std dev: 243 ms +- 7 ms ......................................... wide_state_25x300_checkpoint_sync: Mean +- std dev: 233 ms +- 7 ms ......................................... wide_state_15x600: Mean +- std dev: 22.8 ms +- 0.3 ms ......................................... wide_state_15x600_sync: Mean +- std dev: 13.7 ms +- 0.1 ms ......................................... wide_state_15x600_checkpoint: Mean +- std dev: 419 ms +- 16 ms ......................................... wide_state_15x600_checkpoint_sync: Mean +- std dev: 409 ms +- 13 ms ......................................... wide_state_9x1200: Mean +- std dev: 22.8 ms +- 0.3 ms ......................................... wide_state_9x1200_sync: Mean +- std dev: 13.8 ms +- 0.2 ms ......................................... wide_state_9x1200_checkpoint: Mean +- std dev: 270 ms +- 8 ms ......................................... wide_state_9x1200_checkpoint_sync: Mean +- std dev: 265 ms +- 12 ms

Check notice on line 1 in README.md

View workflow job for this annotation

GitHub Actions / benchmark

Comparison against main

+----------------------------------------+---------+-----------------------+ | Benchmark | main | changes | +========================================+=========+=======================+ | fanout_to_subgraph_100x | 545 ms | 530 ms: 1.03x faster | +----------------------------------------+---------+-----------------------+ | fanout_to_subgraph_100x_checkpoint | 755 ms | 735 ms: 1.03x faster | +----------------------------------------+---------+-----------------------+ | react_agent_100x | 416 ms | 410 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | wide_state_25x300_checkpoint_sync | 235 ms | 233 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | fanout_to_subgraph_10x | 56.3 ms | 55.8 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | fanout_to_subgraph_10x_checkpoint_sync | 77.7 ms | 77.0 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | react_agent_10x_checkpoint_sync | 38.9 ms | 38.6 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | fanout_to_subgraph_10x_checkpoint | 74.8 ms | 74.2 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | wide_state_25x300_sync | 12.0 ms | 12.0 ms: 1.01x faster | +----------------------------------------+---------+-----------------------+ | wide_state_15x600_sync | 13.8 ms | 13.7 ms: 1.00x faster | +----------------------------------------+---------+-----------------------+ | react_agent_10x_sync | 29.4 ms | 29.3 ms: 1.00x faster | +----------------------------------------+---------+-----------------------+ | wide_state_15x600 | 22.9 ms | 22.8 ms: 1.00x faster | +----------------------------------------+---------+-----------------------+ | wide_state_25x300 | 19.7 ms | 19.9 ms: 1.01x slower | +----------------------------------------+---------+-----------------------+ | wide_state_9x1200_checkpoint_sync | 262 ms | 265 ms: 1.01x slower | +----------------------------------------+---------+-----------------------+ | react_agent_10x_checkpoint | 51.2 ms | 51.9 ms: 1.01x slower | +----------------------------------------+---------+-----------------------+ | wide_state_15x600_checkpoint | 414 ms | 419 ms: 1.01x slower | +----------------------------------------+---------+-----------------------+ | react_agent_100x_checkpoint_sync | 870 ms | 888 ms: 1.02x slower | +----------------------------------------+---------+-----------------------+ | Geometric mean | (ref) | 1.00x faster | +----------------------------------------+---------+-----------------------+ Benchmark hidden because not significant (11): fanout_to_subgraph_10x_sync, react_agent_100x_sync, wide_state_25x300_checkpoint, react_agent_100x_checkpoint, react_agent_10x, wide_state_9x1200, fanout_to_subgraph_100x_sync, wide_state_9x1200_sync, fanout_to_subgraph_100x_checkpoint_sync, wide_state_9x1200_checkpoint, wide_state_15x600_checkpoint_sync

![Version](https://img.shields.io/pypi/v/langgraph)
[![Downloads](https://static.pepy.tech/badge/langgraph/month)](https://pepy.tech/project/langgraph)
Expand Down Expand Up @@ -224,7 +224,7 @@

* [Tutorials](https://langchain-ai.github.io/langgraph/tutorials/): Learn to build with LangGraph through guided examples.
* [How-to Guides](https://langchain-ai.github.io/langgraph/how-tos/): Accomplish specific things within LangGraph, from streaming, to adding memory & persistence, to common design patterns (branching, subgraphs, etc.), these are the place to go if you want to copy and run a specific code snippet.
* [Conceptual Guides](https://langchain-ai.github.io/langgraph/concepts/): In-depth explanations of the key concepts and principles behind LangGraph, such as nodes, edges, state and more.
* [Conceptual Guides](https://langchain-ai.github.io/langgraph/concepts/high_level/): In-depth explanations of the key concepts and principles behind LangGraph, such as nodes, edges, state and more.
* [API Reference](https://langchain-ai.github.io/langgraph/reference/graphs/): Review important classes and methods, simple examples of how to use the graph and checkpointing APIs, higher-level prebuilt components and more.
* [Cloud (beta)](https://langchain-ai.github.io/langgraph/cloud/): With one click, deploy LangGraph applications to LangGraph Cloud.

Expand Down
4 changes: 2 additions & 2 deletions docs/docs/how-tos/branching.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@
"metadata": {},
"source": [
"<details class=\"note\"> <summary>Exception handling?</summary>\n",
" <p>LangGraph executes nodes within <a href=\"https://langchain-ai.github.io/langgraph/concepts/#core-design\">\"supersteps\"</a>, meaning that while parallel branches are executed in parallel, the entire superstep is <b>transactional</b>. If any of these branches raises an exception, <b>none</b> of the updates are applied to the state (the entire superstep errors).<br><br>\n",
" <p>LangGraph executes nodes within <a href=\"https://langchain-ai.github.io/langgraph/concepts/low_level/#graphs\">\"supersteps\"</a>, meaning that while parallel branches are executed in parallel, the entire superstep is <b>transactional</b>. If any of these branches raises an exception, <b>none</b> of the updates are applied to the state (the entire superstep errors).<br><br>\n",
" If you have error-prone (perhaps want to handle flakey API calls), LangGraph provides two ways to address this:<br>\n",
" <ol>\n",
" <li>You can write regular python code within your node to catch and handle exceptions.</li>\n",
Expand Down Expand Up @@ -642,7 +642,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
"version": "3.11.9"
}
},
"nbformat": 4,
Expand Down
2 changes: 1 addition & 1 deletion docs/docs/how-tos/streaming-content.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"source": [
"# How to stream arbitrary nested content\n",
"\n",
"The most common use case for streaming from inside a node is to stream LLM tokens, but you may have other long-running streaming functions you wish to render for the user. While individual nodes in LangGraph cannot return generators (since they are executed to completion for each [superstep](https://langchain-ai.github.io/langgraph/concepts/#core-design)), we can still stream arbitrary custom functions from within a node using a similar tact and calling `astream_events` on the graph.\n",
"The most common use case for streaming from inside a node is to stream LLM tokens, but you may have other long-running streaming functions you wish to render for the user. While individual nodes in LangGraph cannot return generators (since they are executed to completion for each [superstep](https://langchain-ai.github.io/langgraph/concepts/low_level)), we can still stream arbitrary custom functions from within a node using a similar tact and calling `astream_events` on the graph.\n",
"\n",
"We do so using a [RunnableGenerator](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableGenerator.html#langchain-core-runnables-base-runnablegenerator) (which your function will automatically behave as if wrapped as a [RunnableLambda](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableLambda.html#langchain_core.runnables.base.RunnableLambda)).\n",
"\n",
Expand Down
2 changes: 1 addition & 1 deletion libs/langgraph/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ final_state["messages"][-1].content

* [Tutorials](https://langchain-ai.github.io/langgraph/tutorials/): Learn to build with LangGraph through guided examples.
* [How-to Guides](https://langchain-ai.github.io/langgraph/how-tos/): Accomplish specific things within LangGraph, from streaming, to adding memory & persistence, to common design patterns (branching, subgraphs, etc.), these are the place to go if you want to copy and run a specific code snippet.
* [Conceptual Guides](https://langchain-ai.github.io/langgraph/concepts/): In-depth explanations of the key concepts and principles behind LangGraph, such as nodes, edges, state and more.
* [Conceptual Guides](https://langchain-ai.github.io/langgraph/concepts/high_level/): In-depth explanations of the key concepts and principles behind LangGraph, such as nodes, edges, state and more.
* [API Reference](https://langchain-ai.github.io/langgraph/reference/graphs/): Review important classes and methods, simple examples of how to use the graph and checkpointing APIs, higher-level prebuilt components and more.
* [Cloud (beta)](https://langchain-ai.github.io/langgraph/cloud/): With one click, deploy LangGraph applications to LangGraph Cloud.

Expand Down
Loading