-
Notifications
You must be signed in to change notification settings - Fork 16k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
75 changes: 75 additions & 0 deletions
75
.scripts/community_split/libs/langchain/tests/unit_tests/chains/test_llm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
"""Test LLM chain.""" | ||
from tempfile import TemporaryDirectory | ||
from typing import Dict, List, Union | ||
from unittest.mock import patch | ||
|
||
import pytest | ||
from langchain_core.output_parsers import BaseOutputParser | ||
from langchain_core.prompts import PromptTemplate | ||
|
||
from langchain.chains.llm import LLMChain | ||
from tests.unit_tests.llms.fake_llm import FakeLLM | ||
|
||
|
||
class FakeOutputParser(BaseOutputParser): | ||
"""Fake output parser class for testing.""" | ||
|
||
def parse(self, text: str) -> Union[str, List[str], Dict[str, str]]: | ||
"""Parse by splitting.""" | ||
return text.split() | ||
|
||
|
||
@pytest.fixture | ||
def fake_llm_chain() -> LLMChain: | ||
"""Fake LLM chain for testing purposes.""" | ||
prompt = PromptTemplate(input_variables=["bar"], template="This is a {bar}:") | ||
return LLMChain(prompt=prompt, llm=FakeLLM(), output_key="text1") | ||
|
||
|
||
@patch( | ||
"langchain_community.llms.loading.get_type_to_cls_dict", | ||
lambda: {"fake": lambda: FakeLLM}, | ||
) | ||
def test_serialization(fake_llm_chain: LLMChain) -> None: | ||
"""Test serialization.""" | ||
from langchain.chains.loading import load_chain | ||
|
||
with TemporaryDirectory() as temp_dir: | ||
file = temp_dir + "/llm.json" | ||
fake_llm_chain.save(file) | ||
loaded_chain = load_chain(file) | ||
assert loaded_chain == fake_llm_chain | ||
|
||
|
||
def test_missing_inputs(fake_llm_chain: LLMChain) -> None: | ||
"""Test error is raised if inputs are missing.""" | ||
with pytest.raises(ValueError): | ||
fake_llm_chain({"foo": "bar"}) | ||
|
||
|
||
def test_valid_call(fake_llm_chain: LLMChain) -> None: | ||
"""Test valid call of LLM chain.""" | ||
output = fake_llm_chain({"bar": "baz"}) | ||
assert output == {"bar": "baz", "text1": "foo"} | ||
|
||
# Test with stop words. | ||
output = fake_llm_chain({"bar": "baz", "stop": ["foo"]}) | ||
# Response should be `bar` now. | ||
assert output == {"bar": "baz", "stop": ["foo"], "text1": "bar"} | ||
|
||
|
||
def test_predict_method(fake_llm_chain: LLMChain) -> None: | ||
"""Test predict method works.""" | ||
output = fake_llm_chain.predict(bar="baz") | ||
assert output == "foo" | ||
|
||
|
||
def test_predict_and_parse() -> None: | ||
"""Test parsing ability.""" | ||
prompt = PromptTemplate( | ||
input_variables=["foo"], template="{foo}", output_parser=FakeOutputParser() | ||
) | ||
llm = FakeLLM(queries={"foo": "foo bar"}) | ||
chain = LLMChain(prompt=prompt, llm=llm) | ||
output = chain.predict_and_parse(foo="foo") | ||
assert output == ["foo", "bar"] |