-
Notifications
You must be signed in to change notification settings - Fork 16k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add python,pandas,xorbits,spark agents to experimental (#11774)
See for contex #11680
- Loading branch information
Showing
20 changed files
with
1,171 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
Empty file.
1 change: 1 addition & 0 deletions
1
libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
"""Pandas toolkit.""" |
341 changes: 341 additions & 0 deletions
341
libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/base.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
"""Agent for working with pandas objects.""" | ||
from typing import Any, Dict, List, Optional, Sequence, Tuple | ||
|
||
from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent | ||
from langchain.agents.mrkl.base import ZeroShotAgent | ||
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent | ||
from langchain.agents.types import AgentType | ||
from langchain.callbacks.base import BaseCallbackManager | ||
from langchain.chains.llm import LLMChain | ||
from langchain.schema import BasePromptTemplate | ||
from langchain.schema.language_model import BaseLanguageModel | ||
from langchain.schema.messages import SystemMessage | ||
from langchain.tools import BaseTool | ||
|
||
from langchain_experimental.agents.agent_toolkits.pandas.prompt import ( | ||
FUNCTIONS_WITH_DF, | ||
FUNCTIONS_WITH_MULTI_DF, | ||
MULTI_DF_PREFIX, | ||
MULTI_DF_PREFIX_FUNCTIONS, | ||
PREFIX, | ||
PREFIX_FUNCTIONS, | ||
SUFFIX_NO_DF, | ||
SUFFIX_WITH_DF, | ||
SUFFIX_WITH_MULTI_DF, | ||
) | ||
from langchain_experimental.tools.python.tool import PythonAstREPLTool | ||
|
||
|
||
def _get_multi_prompt( | ||
dfs: List[Any], | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
input_variables: Optional[List[str]] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
num_dfs = len(dfs) | ||
if suffix is not None: | ||
suffix_to_use = suffix | ||
include_dfs_head = True | ||
elif include_df_in_prompt: | ||
suffix_to_use = SUFFIX_WITH_MULTI_DF | ||
include_dfs_head = True | ||
else: | ||
suffix_to_use = SUFFIX_NO_DF | ||
include_dfs_head = False | ||
if input_variables is None: | ||
input_variables = ["input", "agent_scratchpad", "num_dfs"] | ||
if include_dfs_head: | ||
input_variables += ["dfs_head"] | ||
|
||
if prefix is None: | ||
prefix = MULTI_DF_PREFIX | ||
|
||
df_locals = {} | ||
for i, dataframe in enumerate(dfs): | ||
df_locals[f"df{i + 1}"] = dataframe | ||
tools = [PythonAstREPLTool(locals=df_locals)] | ||
|
||
prompt = ZeroShotAgent.create_prompt( | ||
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables | ||
) | ||
|
||
partial_prompt = prompt.partial() | ||
if "dfs_head" in input_variables: | ||
dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs]) | ||
partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head) | ||
if "num_dfs" in input_variables: | ||
partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) | ||
return partial_prompt, tools | ||
|
||
|
||
def _get_single_prompt( | ||
df: Any, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
input_variables: Optional[List[str]] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
if suffix is not None: | ||
suffix_to_use = suffix | ||
include_df_head = True | ||
elif include_df_in_prompt: | ||
suffix_to_use = SUFFIX_WITH_DF | ||
include_df_head = True | ||
else: | ||
suffix_to_use = SUFFIX_NO_DF | ||
include_df_head = False | ||
|
||
if input_variables is None: | ||
input_variables = ["input", "agent_scratchpad"] | ||
if include_df_head: | ||
input_variables += ["df_head"] | ||
|
||
if prefix is None: | ||
prefix = PREFIX | ||
|
||
tools = [PythonAstREPLTool(locals={"df": df})] | ||
|
||
prompt = ZeroShotAgent.create_prompt( | ||
tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables | ||
) | ||
|
||
partial_prompt = prompt.partial() | ||
if "df_head" in input_variables: | ||
partial_prompt = partial_prompt.partial( | ||
df_head=str(df.head(number_of_head_rows).to_markdown()) | ||
) | ||
return partial_prompt, tools | ||
|
||
|
||
def _get_prompt_and_tools( | ||
df: Any, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
input_variables: Optional[List[str]] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
try: | ||
import pandas as pd | ||
|
||
pd.set_option("display.max_columns", None) | ||
except ImportError: | ||
raise ImportError( | ||
"pandas package not found, please install with `pip install pandas`" | ||
) | ||
|
||
if include_df_in_prompt is not None and suffix is not None: | ||
raise ValueError("If suffix is specified, include_df_in_prompt should not be.") | ||
|
||
if isinstance(df, list): | ||
for item in df: | ||
if not isinstance(item, pd.DataFrame): | ||
raise ValueError(f"Expected pandas object, got {type(df)}") | ||
return _get_multi_prompt( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
input_variables=input_variables, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
else: | ||
if not isinstance(df, pd.DataFrame): | ||
raise ValueError(f"Expected pandas object, got {type(df)}") | ||
return _get_single_prompt( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
input_variables=input_variables, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
|
||
|
||
def _get_functions_single_prompt( | ||
df: Any, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
if suffix is not None: | ||
suffix_to_use = suffix | ||
if include_df_in_prompt: | ||
suffix_to_use = suffix_to_use.format( | ||
df_head=str(df.head(number_of_head_rows).to_markdown()) | ||
) | ||
elif include_df_in_prompt: | ||
suffix_to_use = FUNCTIONS_WITH_DF.format( | ||
df_head=str(df.head(number_of_head_rows).to_markdown()) | ||
) | ||
else: | ||
suffix_to_use = "" | ||
|
||
if prefix is None: | ||
prefix = PREFIX_FUNCTIONS | ||
|
||
tools = [PythonAstREPLTool(locals={"df": df})] | ||
system_message = SystemMessage(content=prefix + suffix_to_use) | ||
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) | ||
return prompt, tools | ||
|
||
|
||
def _get_functions_multi_prompt( | ||
dfs: Any, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
if suffix is not None: | ||
suffix_to_use = suffix | ||
if include_df_in_prompt: | ||
dfs_head = "\n\n".join( | ||
[d.head(number_of_head_rows).to_markdown() for d in dfs] | ||
) | ||
suffix_to_use = suffix_to_use.format( | ||
dfs_head=dfs_head, | ||
) | ||
elif include_df_in_prompt: | ||
dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs]) | ||
suffix_to_use = FUNCTIONS_WITH_MULTI_DF.format( | ||
dfs_head=dfs_head, | ||
) | ||
else: | ||
suffix_to_use = "" | ||
|
||
if prefix is None: | ||
prefix = MULTI_DF_PREFIX_FUNCTIONS | ||
prefix = prefix.format(num_dfs=str(len(dfs))) | ||
|
||
df_locals = {} | ||
for i, dataframe in enumerate(dfs): | ||
df_locals[f"df{i + 1}"] = dataframe | ||
tools = [PythonAstREPLTool(locals=df_locals)] | ||
system_message = SystemMessage(content=prefix + suffix_to_use) | ||
prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) | ||
return prompt, tools | ||
|
||
|
||
def _get_functions_prompt_and_tools( | ||
df: Any, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
input_variables: Optional[List[str]] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: | ||
try: | ||
import pandas as pd | ||
|
||
pd.set_option("display.max_columns", None) | ||
except ImportError: | ||
raise ImportError( | ||
"pandas package not found, please install with `pip install pandas`" | ||
) | ||
if input_variables is not None: | ||
raise ValueError("`input_variables` is not supported at the moment.") | ||
|
||
if include_df_in_prompt is not None and suffix is not None: | ||
raise ValueError("If suffix is specified, include_df_in_prompt should not be.") | ||
|
||
if isinstance(df, list): | ||
for item in df: | ||
if not isinstance(item, pd.DataFrame): | ||
raise ValueError(f"Expected pandas object, got {type(df)}") | ||
return _get_functions_multi_prompt( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
else: | ||
if not isinstance(df, pd.DataFrame): | ||
raise ValueError(f"Expected pandas object, got {type(df)}") | ||
return _get_functions_single_prompt( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
|
||
|
||
def create_pandas_dataframe_agent( | ||
llm: BaseLanguageModel, | ||
df: Any, | ||
agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, | ||
callback_manager: Optional[BaseCallbackManager] = None, | ||
prefix: Optional[str] = None, | ||
suffix: Optional[str] = None, | ||
input_variables: Optional[List[str]] = None, | ||
verbose: bool = False, | ||
return_intermediate_steps: bool = False, | ||
max_iterations: Optional[int] = 15, | ||
max_execution_time: Optional[float] = None, | ||
early_stopping_method: str = "force", | ||
agent_executor_kwargs: Optional[Dict[str, Any]] = None, | ||
include_df_in_prompt: Optional[bool] = True, | ||
number_of_head_rows: int = 5, | ||
extra_tools: Sequence[BaseTool] = (), | ||
**kwargs: Dict[str, Any], | ||
) -> AgentExecutor: | ||
"""Construct a pandas agent from an LLM and dataframe.""" | ||
agent: BaseSingleActionAgent | ||
if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: | ||
prompt, base_tools = _get_prompt_and_tools( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
input_variables=input_variables, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
tools = base_tools + list(extra_tools) | ||
llm_chain = LLMChain( | ||
llm=llm, | ||
prompt=prompt, | ||
callback_manager=callback_manager, | ||
) | ||
tool_names = [tool.name for tool in tools] | ||
agent = ZeroShotAgent( | ||
llm_chain=llm_chain, | ||
allowed_tools=tool_names, | ||
callback_manager=callback_manager, | ||
**kwargs, | ||
) | ||
elif agent_type == AgentType.OPENAI_FUNCTIONS: | ||
_prompt, base_tools = _get_functions_prompt_and_tools( | ||
df, | ||
prefix=prefix, | ||
suffix=suffix, | ||
input_variables=input_variables, | ||
include_df_in_prompt=include_df_in_prompt, | ||
number_of_head_rows=number_of_head_rows, | ||
) | ||
tools = base_tools + list(extra_tools) | ||
agent = OpenAIFunctionsAgent( | ||
llm=llm, | ||
prompt=_prompt, | ||
tools=tools, | ||
callback_manager=callback_manager, | ||
**kwargs, | ||
) | ||
else: | ||
raise ValueError(f"Agent type {agent_type} not supported at the moment.") | ||
return AgentExecutor.from_agent_and_tools( | ||
agent=agent, | ||
tools=tools, | ||
callback_manager=callback_manager, | ||
verbose=verbose, | ||
return_intermediate_steps=return_intermediate_steps, | ||
max_iterations=max_iterations, | ||
max_execution_time=max_execution_time, | ||
early_stopping_method=early_stopping_method, | ||
**(agent_executor_kwargs or {}), | ||
) |
44 changes: 44 additions & 0 deletions
44
libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/prompt.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# flake8: noqa | ||
|
||
PREFIX = """ | ||
You are working with a pandas dataframe in Python. The name of the dataframe is `df`. | ||
You should use the tools below to answer the question posed of you:""" | ||
|
||
MULTI_DF_PREFIX = """ | ||
You are working with {num_dfs} pandas dataframes in Python named df1, df2, etc. You | ||
should use the tools below to answer the question posed of you:""" | ||
|
||
SUFFIX_NO_DF = """ | ||
Begin! | ||
Question: {input} | ||
{agent_scratchpad}""" | ||
|
||
SUFFIX_WITH_DF = """ | ||
This is the result of `print(df.head())`: | ||
{df_head} | ||
Begin! | ||
Question: {input} | ||
{agent_scratchpad}""" | ||
|
||
SUFFIX_WITH_MULTI_DF = """ | ||
This is the result of `print(df.head())` for each dataframe: | ||
{dfs_head} | ||
Begin! | ||
Question: {input} | ||
{agent_scratchpad}""" | ||
|
||
PREFIX_FUNCTIONS = """ | ||
You are working with a pandas dataframe in Python. The name of the dataframe is `df`.""" | ||
|
||
MULTI_DF_PREFIX_FUNCTIONS = """ | ||
You are working with {num_dfs} pandas dataframes in Python named df1, df2, etc.""" | ||
|
||
FUNCTIONS_WITH_DF = """ | ||
This is the result of `print(df.head())`: | ||
{df_head}""" | ||
|
||
FUNCTIONS_WITH_MULTI_DF = """ | ||
This is the result of `print(df.head())` for each dataframe: | ||
{dfs_head}""" |
Empty file.
Oops, something went wrong.