-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
... added quiz 3 to table of contents
- Loading branch information
1 parent
9339a00
commit 0a7b179
Showing
2 changed files
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
--- | ||
redirect_from: | ||
- "/quizzes/quiz3-bvps" | ||
title: |- | ||
Sample Quiz 3 problems: BVPs | ||
pagenum: 17 | ||
prev_page: | ||
url: /quizzes/quiz2-IVPs.html | ||
next_page: | ||
url: /contributing.html | ||
suffix: .md | ||
search: t r delta equation ri frac infty n lambda begin end ti m b y x sin left right tn k h annular fin dr align eigenvalue pi finite difference temperature radius dt solution quad ldots problem outer described where heat transfer figure center ode location differences recursion c boundary condition replace given prime eigenfunction principal gather cos text therefore associated sample quiz problems bvps method distribution inner d rm radial distance centerline independent variable constant depends coefficient thermal conductivity thickness annulus assuming choose spatial step size img src images png alt style width px figcaptionfigure figcaption representation applies using | ||
|
||
comment: "***PROGRAMMATICALLY GENERATED, DO NOT EDIT. SEE ORIGINAL FILES IN /content***" | ||
--- | ||
|
||
<main class="jupyter-page"> | ||
<div id="page-info"><div id="page-title">Sample Quiz 3 problems: BVPs</div> | ||
</div> | ||
<div class="jb_cell"> | ||
|
||
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell"> | ||
<div class="text_cell_render border-box-sizing rendered_html"> | ||
<h2 id="Problem-1:-Finite-difference-method">Problem 1: Finite difference method<a class="anchor-link" href="#Problem-1:-Finite-difference-method"> </a></h2><p>The temperature distribution $T(r)$ in an annular fin of inner radius $r_1$ and outer radius $r_2$ is described by the equation | ||
\begin{equation} | ||
r \frac{d^2 T}{dr^2} + \frac{dT}{dr} - rm^2 (T - T_{\infty}) = 0 \;, | ||
\end{equation} | ||
where $r$ is the radial distance from the centerline (the independent | ||
variable) and $m^2$ is a constant that depends on the heat transfer coefficient, thermal conductivity, and thickness of the annulus. Assuming we choose a spatial step size $\Delta r$,</p> | ||
<figure> | ||
<center> | ||
<img src="../images/annular-fin.png" alt="Annular fin" style="width: 400px;"/> | ||
<figcaption>Figure: Annular fin</figcaption> | ||
</center> | ||
</figure><p>a.) Write the finite-difference representation of the ODE (that applies at a location $r_i$), using central differences.</p> | ||
<p>b.) Based on the last part, write the recursion formula.</p> | ||
<p>c.) The boundary condition at the outer radius $r = r_2$ is described by convection heat transfer: | ||
\begin{equation} | ||
-k \left. \frac{dT}{dr} \right|_{r=r_2} = h \left[ T(r=r_2) - T_{\infty} \right] \;. | ||
\end{equation} | ||
Write the boundary condition at $r = r_2$ in recursion form (i.e., the equation you would implement into your system of equations to solve for temperature).</p> | ||
<h3 id="Solution">Solution<a class="anchor-link" href="#Solution"> </a></h3><p>a.) Replace the derivatives in the given ODE with finite differences, and replace any locations with the $i$ location: | ||
\begin{equation} | ||
r_i \frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta r^2} + \frac{T_{i+1} - T_{i-1}}{\Delta r} - r_i m^2 (T_i - T_{\infty}) = 0 | ||
\end{equation} | ||
or | ||
\begin{equation} | ||
r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 (T_i - T_{\infty}) = 0 | ||
\end{equation}</p> | ||
<p>b.) Rearrange and combine terms: | ||
\begin{align} | ||
r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 (T_i - T_{\infty}) &= 0 \\ | ||
r_i (T_{i-1} - 2T_i + T_{i+1}) + \frac{\Delta r}{2} (T_{i+1} - T_{i-1}) - r_i m^2 \Delta r^2 T_i &= -r_i m^2 \Delta r^2 T_{\infty} \\ | ||
\left(r_i - \frac{\Delta r}{2}\right) T_{i-1} + \left( -2 r_i - r_i m^2 \Delta r^2 \right) T_i + \left( r_i + \frac{\Delta r}{2} \right) T_{i+1} &= -r_i m^2 \Delta r^2 T_{\infty} | ||
\end{align}</p> | ||
<p>c.) We can use a backward difference to approximate the $dT/dr$ term. $T_n$ represents the temperature at node $n$ where $r_n = r_2$: | ||
\begin{align} | ||
-k \frac{T_n - T_{n-1}}{\Delta r} &= h (T_n - T_{\infty}) \\ | ||
-k (T_n - T_{n-1}) &= h \Delta r (T_n - T_{\infty}) \\ | ||
k T_{n-1} - (k + h\Delta r) T_n &= -h \Delta r T_{\infty} | ||
\end{align}</p> | ||
<h2 id="Problem-2:-eigenvalue">Problem 2: eigenvalue<a class="anchor-link" href="#Problem-2:-eigenvalue"> </a></h2><p>Given the equation $y^{\prime\prime} + 9 \lambda^2 y = 0$ with $y(0) = 0$ and $y(2) = 0$,</p> | ||
<p>a.) Find the expression that gives all eigenvalues ($\lambda$). What is the eigenfunction?</p> | ||
<p>b.) Calculate the principal eigenvalue.</p> | ||
<h3 id="Solution">Solution<a class="anchor-link" href="#Solution"> </a></h3><p>a.) | ||
\begin{gather} | ||
y(x) = A \sin (3 \lambda x) + B \cos (3 \lambda x) \\ | ||
\text{Apply BCs: } y(x=0) = 0 = A \sin(0) + B \cos(0) = B \\ | ||
\therefore B = 0 \\ | ||
y(x) = A \sin (3 \lambda x) \\ | ||
y(x=2) = 0 = A \sin (3 \lambda 2) \\ | ||
A \neq 0 \text{ so } \sin(3 \lambda 2) = \sin(6 \lambda) = 0 \therefore 6 \lambda = n \pi \quad n=1,2,3,\ldots \\ | ||
\lambda = \frac{n \pi}{6} \quad n=1,2,3,\ldots,\infty | ||
\end{gather}</p> | ||
<p>The eigenfunction is then the solution function associated with an eigenvalue: | ||
\begin{equation} | ||
y_n = A_n \sin \left( \frac{n \pi x}{2} \right) \quad n = 1, 2, 3, \ldots, \infty | ||
\end{equation}</p> | ||
<p>b.) The principal eigenvalue is just that associated with $n = 1$: | ||
\begin{equation} | ||
\lambda_p = \lambda_1 = \frac{\pi}{6} | ||
\end{equation}</p> | ||
<div class="highlight"><pre><span></span> | ||
</pre></div> | ||
|
||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
|
||
|
||
|
||
|
||
</main> | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters