Skip to content

A simpler Pytorch + Zeta Implementation of the paper: "SiMBA: Simplified Mamba-based Architecture for Vision and Multivariate Time series"

License

Notifications You must be signed in to change notification settings

kyegomez/Simba

Repository files navigation

Simba

graph A simpler Pytorch + Zeta Implementation of the paper: "SiMBA: Simplified Mamba-based Architecture for Vision and Multivariate Time series"

install

$ pip install simba-torch

usage

import torch 
from simba_torch.main import Simba

# Forward pass with images
img = torch.randn(1, 3, 224, 224)

# Create model
model = Simba(
    dim = 4,                # Dimension of the transformer
    dropout = 0.1,          # Dropout rate for regularization
    d_state=64,             # Dimension of the transformer state
    d_conv=64,              # Dimension of the convolutional layers
    num_classes=64,         # Number of output classes
    depth=8,                # Number of transformer layers
    patch_size=16,          # Size of the image patches
    image_size=224,         # Size of the input image
    channels=3,             # Number of input channels
    # use_pos_emb=True # If you want
)

# Forward pass
out = model(img)
print(out.shape)

Train

Dependencies: download and extract the datasets through wget wget http://images.cocodataset.org/zips/train2017.zip -O coco_train2017.zip wget http://images.cocodataset.org/zips/val2017.zip -O coco_val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip -O coco_ann2017.zip

Then run the following script: python3 train.py

License

MIT

Todo

  • Add paper link
  • Add citation bibtex
  • cleanup

About

A simpler Pytorch + Zeta Implementation of the paper: "SiMBA: Simplified Mamba-based Architecture for Vision and Multivariate Time series"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Contributors 3

  •  
  •  
  •