Skip to content

A parallel version of Trust Region Policy Optimization

Notifications You must be signed in to change notification settings

kvfrans/parallel-trpo

Repository files navigation

parallel-trpo

A parallel implementation of Trust Region Policy Optimization on environments from OpenAI gym

Now includes hyperparaemter adaptation as well! More more info, check my post on this project.

I'm working towards the ideas at this openAI research request. The code is based off of this implementation.

I'm currently working together with Danijar on writing an updated version of this preliminary paper, describing the multiple actors setup.

How to run:

# This just runs a simple training on Reacher-v1.
python main.py

# For the commands used to recreate results, check trials.txt

Parameters:

--task: what gym environment to run on
--timesteps_per_batch: how many timesteps for each policy iteration
--n_iter: number of iterations
--gamma: discount factor for future rewards_1
--max_kl: maximum KL divergence between new and old policy
--cg_damping: damp on the KL constraint (ratio of original gradient to use)
--num_threads: how many async threads to use
--monitor: whether to monitor progress for publishing results to gym or not

About

A parallel version of Trust Region Policy Optimization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages