Skip to content

Commit

Permalink
feat: add batch knn for kdtrees and docs (#65)
Browse files Browse the repository at this point in the history
* feat: add batch knn for kdtrees and docs

* fix: update batch nns func name
  • Loading branch information
AtticusZeller authored Jun 18, 2024
1 parent 06193e3 commit 5e367c8
Showing 1 changed file with 113 additions and 5 deletions.
118 changes: 113 additions & 5 deletions src/python/kdtree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,22 @@ using namespace small_gicp;

void define_kdtree(py::module& m) {
// KdTree
py::class_<KdTree<PointCloud>, std::shared_ptr<KdTree<PointCloud>>>(m, "KdTree", "KdTree") //
py::class_<KdTree<PointCloud>, std::shared_ptr<KdTree<PointCloud>>>(m, "KdTree") //
.def(
py::init([](const PointCloud::ConstPtr& points, int num_threads) { return std::make_shared<KdTree<PointCloud>>(points, KdTreeBuilderOMP(num_threads)); }),
py::arg("points"),
py::arg("num_threads") = 1)
py::arg("num_threads") = 1,
R"""(
Construct a KdTree from a point cloud.
Parameters
----------
points : PointCloud
The input point cloud.
num_threads : int, optional
The number of threads to use for KdTree construction. Default is 1.
)""")

.def(
"nearest_neighbor_search",
[](const KdTree<PointCloud>& kdtree, const Eigen::Vector3d& pt) {
Expand All @@ -30,7 +41,23 @@ void define_kdtree(py::module& m) {
return std::make_tuple(found, k_index, k_sq_dist);
},
py::arg("pt"),
"Search the nearest neighbor. Returns a tuple of found flag, index, and squared distance.")
R"""(
Find the nearest neighbor to a given point.
Parameters
----------
pt : NDArray, shape (3,)
The input point.
Returns
-------
found : int
Whether a neighbor was found (1 if found, 0 if not).
k_index : int
The index of the nearest neighbor in the point cloud.
k_sq_dist : float
The squared distance to the nearest neighbor.
)""")
.def(
"knn_search",
[](const KdTree<PointCloud>& kdtree, const Eigen::Vector3d& pt, int k) {
Expand All @@ -41,5 +68,86 @@ void define_kdtree(py::module& m) {
},
py::arg("pt"),
py::arg("k"),
"Search the k-nearest neighbors. Returns a pair of indices and squared distances.");
}
R"""(
Find the k nearest neighbors to a given point.
Parameters
----------
pt : NDArray, shape (3,)
The input point.
k : int
The number of nearest neighbors to search for.
Returns
-------
k_indices : NDArray, shape (k,)
The indices of the k nearest neighbors in the point cloud.
k_sq_dists : NDArray, shape (k,)
The squared distances to the k nearest neighbors.
)""")
.def(
"batch_nearest_neighbor_search",
[](const KdTree<PointCloud>& kdtree, const Eigen::MatrixXd& pts) {
std::vector<size_t> k_indices(pts.rows(), -1);
std::vector<double> k_sq_dists(pts.rows(), std::numeric_limits<double>::max());
for (int i = 0; i < pts.rows(); ++i) {
const size_t found = traits::nearest_neighbor_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), &k_indices[i], &k_sq_dists[i]);
if (!found) {
k_indices[i] = -1;
k_sq_dists[i] = std::numeric_limits<double>::max();
}
}
return std::make_pair(k_indices, k_sq_dists);
},
py::arg("pts"),
R"""(
Find the nearest neighbors for a batch of points.
Parameters
----------
pts : NDArray, shape (n, 3)
The input points.
Returns
-------
k_indices : NDArray, shape (n,)
The indices of the nearest neighbors for each input point.
k_sq_dists : NDArray, shape (n,)
The squared distances to the nearest neighbors for each input point.
)""")
.def(
"batch_knn_search",
[](const KdTree<PointCloud>& kdtree, const Eigen::MatrixXd& pts, int k) {
std::vector<std::vector<size_t>> k_indices(pts.rows(), std::vector<size_t>(k, -1));
std::vector<std::vector<double>> k_sq_dists(pts.rows(), std::vector<double>(k, std::numeric_limits<double>::max()));
for (int i = 0; i < pts.rows(); ++i) {
const size_t found = traits::knn_search(kdtree, Eigen::Vector4d(pts(i, 0), pts(i, 1), pts(i, 2), 1.0), k, k_indices[i].data(), k_sq_dists[i].data());
if (found < k) {
for (size_t j = found; j < k; ++j) {
k_indices[i][j] = -1;
k_sq_dists[i][j] = std::numeric_limits<double>::max();
}
}
}
return std::make_pair(k_indices, k_sq_dists);
},
py::arg("pts"),
py::arg("k"),
R"""(
Find the k nearest neighbors for a batch of points.
Parameters
----------
pts : NDArray, shape (n, 3)
The input points.
k : int
The number of nearest neighbors to search for.
Returns
-------
k_indices : list of NDArray, shape (n,)
The list of indices of the k nearest neighbors for each input point.
k_sq_dists : list of NDArray, shape (n,)
The list of squared distances to the k nearest neighbors for each input point.
)""");
}

0 comments on commit 5e367c8

Please sign in to comment.