Skip to content

Commit

Permalink
Fix saved classifier models from before 0.14 (#1839)
Browse files Browse the repository at this point in the history
We switched the class name for `XXClassifier` models to
`XXTextClasssifier`. However, a saved classifier before 0.16 will still
be looking for the class under the old name.

This updates our export helper to also registered the old name, so we can
restore to the new class when loading the model.

I also try to improve our error messages when we do encounter an
unrecognized class.
  • Loading branch information
mattdangerw authored Sep 18, 2024
1 parent c61dad3 commit 29fe129
Show file tree
Hide file tree
Showing 4 changed files with 41 additions and 3 deletions.
13 changes: 11 additions & 2 deletions keras_nlp/src/api_export.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,16 @@
namex = None


def maybe_register_serializable(symbol):
def maybe_register_serializable(path, symbol):
# If we have multiple export names, actually make sure to register these
# first. This makes sure we have a backward compat mapping of old serialized
# name to new class.
if isinstance(path, (list, tuple)):
for name in path:
name = name.split(".")[-1]
keras.saving.register_keras_serializable(
package="keras_nlp", name=name
)(symbol)
if isinstance(symbol, types.FunctionType) or hasattr(symbol, "get_config"):
# We register twice, first with the old name, second with the new name,
# so loading still works under the old name.
Expand All @@ -39,7 +48,7 @@ def __init__(self, path):
super().__init__(package="keras_nlp", path=path)

def __call__(self, symbol):
maybe_register_serializable(symbol)
maybe_register_serializable(self.path, symbol)
return super().__call__(symbol)

else:
Expand Down
9 changes: 9 additions & 0 deletions keras_nlp/src/models/bert/bert_text_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,15 @@ def test_saved_model(self):
input_data=self.input_data,
)

@pytest.mark.large
def test_smallest_preset(self):
self.run_preset_test(
cls=BertTextClassifier,
preset="bert_tiny_en_uncased_sst2",
input_data=self.input_data,
expected_output_shape=(2, 2),
)

@pytest.mark.extra_large
def test_all_presets(self):
for preset in BertTextClassifier.presets:
Expand Down
11 changes: 10 additions & 1 deletion keras_nlp/src/utils/preset_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -569,7 +569,16 @@ def load_serialized_object(config, **kwargs):

def check_config_class(config):
"""Validate a preset is being loaded on the correct class."""
return keras.saving.get_registered_object(config["registered_name"])
registered_name = config["registered_name"]
cls = keras.saving.get_registered_object(registered_name)
if cls is None:
raise ValueError(
f"Attempting to load class {registered_name} with "
"`from_preset()`, but there is no class registered with Keras "
f"for {registered_name}. Make sure to register any custom "
"classes with `register_keras_serializable()`."
)
return cls


def jax_memory_cleanup(layer):
Expand Down
11 changes: 11 additions & 0 deletions keras_nlp/src/utils/preset_utils_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os

import keras
import pytest
from absl.testing import parameterized

Expand All @@ -38,6 +40,15 @@ def test_preset_errors(self):
with self.assertRaisesRegex(ValueError, "Unknown preset identifier"):
AlbertTextClassifier.from_preset("snaggle://bort/bort/bort")

backbone = BertBackbone.from_preset("bert_tiny_en_uncased")
preset_dir = self.get_temp_dir()
config = keras.utils.serialize_keras_object(backbone)
config["registered_name"] = "keras_nlp>BortBackbone"
with open(os.path.join(preset_dir, CONFIG_FILE), "w") as config_file:
config_file.write(json.dumps(config, indent=4))
with self.assertRaisesRegex(ValueError, "class keras_nlp>BortBackbone"):
BertBackbone.from_preset(preset_dir)

def test_upload_empty_preset(self):
temp_dir = self.get_temp_dir()
empty_preset = os.path.join(temp_dir, "empty")
Expand Down

0 comments on commit 29fe129

Please sign in to comment.