Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update losses.md #194

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions sources/losses.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ keras.losses.mean_squared_error(y_true, y_pred)


예측값과 목표값의 평균 제곱 오차<sub>(MSE, mean squared error)</sub>를 계산합니다.
`(square(y_pred - y_true))/len(y_true)`
`mean((square(y_pred - y_true)))`

__인자__

Expand All @@ -56,7 +56,7 @@ keras.losses.mean_absolute_error(y_true, y_pred)


예측값과 목표값의 평균 절대 오차<sub>(MAE, mean absolute error)</sub>를 계산합니다.
`(abs(y_pred - y_true))/len(y_true)`
`mean(abs(y_pred - y_true))`

__인자__

Expand All @@ -78,7 +78,7 @@ keras.losses.mean_absolute_percentage_error(y_true, y_pred)


예측값과 목표값의 평균 절대 퍼센트 오차<sub>(MAPE, mean absolute percentage error)</sub>를 계산합니다.
`100.*((abs(y_pred - y_true))/len(y_true))`
`100.*mean((abs(y_pred - y_true)))`

__인자__

Expand Down Expand Up @@ -144,7 +144,7 @@ keras.losses.hinge(y_true, y_pred)


예측값과 목표값의 'hinge' 손실값을 계산합니다.
`mean(maximum(1 - y_true * y_pred, 0)`
`mean(maximum(1 - y_true * y_pred, 0))`

__인자__

Expand Down Expand Up @@ -278,7 +278,7 @@ keras.losses.kullback_leibler_divergence(y_true, y_pred)

예측값과 목표값 사이의 KL 발산<sub>kullback_leibler divergence</sub> 값을 계산합니다.

`sum(y_true * log(y_true / y_pred)`
`sum(y_true * log(y_true / y_pred))`

__인자__

Expand All @@ -299,7 +299,7 @@ keras.losses.poisson(y_true, y_pred)
예측값과 목표값 사이의 포아송 손실값<sub>poisson loss</sub>을 계산합니다.
목표값이 포아송 분포를 따른다고 생각될 때 사용합니다.

`mean(y_pred - y_true * log(y_pred + epsilon())`
`mean(y_pred - y_true * log(y_pred + epsilon()))`

__인자__

Expand Down