Skip to content

Tools for working with single cell data sets.

License

Unknown, Unknown licenses found

Licenses found

Unknown
LICENSE
Unknown
COPYING
Notifications You must be signed in to change notification settings

jscaber/cgat-proj057

 
 

Repository files navigation

https://travis-ci.org/cgat-developers/cgat-apps.svg?branch=master

Project 057

This repository contains R scripts to accompany: Ellender TJ, Avery SV, Mahfooz K, et al. Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nat Commun. 2019;10(1):5224. Published 2019 Nov 19. doi:10.1038/s41467-019-13206-1

Installation

  1. Install https://github.com/cgat-developers/cgat-core and https://github.com/cgat-developers/cgat-apps
  2. Install https://github.com/AllenInstitute/scrattch.hicat
  3. Download the project057 github repository
  4. Run `setup.py develop` in the project057 directory

Usage

The scripts require a `.tsv` counts table, generated e.g. by featurecounts as input. They also require an annotation table for the columns.

Run the cgat-singlecell --help command to see what scripts are available and how to use them.

For example, to run filter data obtained from featurecounts `cgat-singlecell filter --counts-filename=featurecounts.tsv --phenotypes-filename=phenodata.tsv --factor=group,mouse_id,collection_date,slice_depth,slice_number,pipette_visual,timepoint > filtered_counts.tsv`

To run the normalisation script and map the data onto a reference dataset (e.g. Allen) use: `cgat-singlecell normalisation --rds-filename sce_filtered_hicat.rds --ERCC ERCC.tsv --allen-design mouse_VISp_2018-06-14_samples-columns.csv --allen-datamatrix mouse_VISp_2018-06-14_exon-matrix.csv --allen-rowdata mouse_VISp_2018-06-14_genes-rows.csv --allen-filter "L4 IT" --norm scran --colours red,green --allen-colours black --perplexity 5 > pipeline.log`

Analysis Sequence

For the publication the following sequence was used on each experimental plate separately.

  1. Filtering of datase using `cgat-singlecell filtering`
  2. Run scrattch.hicat using wrapper script `cgat-singlecell hicat`
  3. Normalisation and mapping to reference dataset using `cgat-singlecell normalisation`
  4. Differential expression analysis using `cgat-singlecell sc-diffexpression`

About

Tools for working with single cell data sets.

Resources

License

Unknown, Unknown licenses found

Licenses found

Unknown
LICENSE
Unknown
COPYING

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 55.8%
  • Python 26.1%
  • Shell 17.6%
  • Dockerfile 0.5%