Skip to content

Commit

Permalink
didn't knit readme file
Browse files Browse the repository at this point in the history
  • Loading branch information
jpmonteagudo28 committed Dec 6, 2024
1 parent c9b4481 commit 1b113c0
Show file tree
Hide file tree
Showing 8 changed files with 887 additions and 5 deletions.
512 changes: 512 additions & 0 deletions .Rhistory

Large diffs are not rendered by default.

2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
# Generated by roxygen2: do not edit by hand

export(seq_data)
export(seq_smooth)
importFrom(stats,approx)
Empty file removed R/seq_color.R
Empty file.
277 changes: 277 additions & 0 deletions R/seq_data_nl.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
#' Interpolate a sequence of values with Easing or Stepping Given Data Points
#'
#' This function generates a sequence of values based on a specified easing or stepping function.
#' It supports linear, polynomial, exponential, and other smooth transitions, as well as stepped transitions.
#'
#' @param data Numeric vector, matrix, data frame, or list. The input data to be used for generating the sequence.
#' @param type Character string specifying the type of sequence. Supported types include:
#' \itemize{
#' \item `"linear"`: Linear interpolation.
#' \item `"quad"`: Quadratic easing.
#' \item `"cubic"`: Cubic easing.
#' \item `"quart"`: Quartic easing.
#' \item `"quint"`: Quintic easing.
#' \item `"exp"`: Exponential easing.
#' \item `"circle"`: Circular easing.
#' \item `"back"`: Back easing with overshoot.
#' \item `"elastic"`: Elastic easing with oscillation.
#' \item `"sine"`: Sine wave easing.
#' \item `"bounce"`: Bouncing easing.
#' \item `"step"`: Stepped transitions.
#' }
#' Defaults to `"linear"`.
#' @param step_count Integer specifying the number of steps for the `"step"` type. Must be between 1 and the length of `data`. Defaults to `NULL`.
#' @param ease Character string specifying the direction of easing. Supported values are:
#' \itemize{
#' \item `"in"`: Easing starts slow and accelerates.
#' \item `"out"`: Easing starts fast and decelerates.
#' \item `"in_out"`: Easing combines both behaviors.
#' }
#' Applicable only for non-linear types. Defaults to `NULL`.
#'
#' @return A numeric vector containing the generated sequence.
#' \itemize{
#' \item For `"linear"`, a smoothly interpolated sequence is returned.
#' \item For `"step"`, a sequence with distinct steps is generated.
#' \item For other easing types, the sequence follows the specified smooth transition curve.
#' }
#'
#' @details
#' The `seq_data` function calculates a sequence of values based on the specified `type` and `ease`.
#' The `data` input is used to determine the range (minimum and maximum) of the sequence to then be interpolated, and the resulting
#' sequence is normalized between 0 and 1 before applying the specified easing or stepping function.
#'
#' For `"step"` type, the number of steps can be controlled using `step_count`. The `ease` parameter has no effect
#' when `type` is `"linear"` or `"step"`.
#'
#' @examples
#' # Generate a linear sequence
#' seq_data(1:10, type = "linear")
#'
#' # Generate a quadratic easing sequence
#' seq_data(rnorm(100,14,5), type = "quad", ease = "in_out")
#'
#' # Generate a stepped sequence with 5 steps
#' seq_data(rpois(100,3), type = "step", step_count = 5)
#'
#' @note
#' This function supports various easing functions commonly used in animations and graphics, as well as
#' stepped sequences for discrete transitions. Invalid or unsupported inputs will result in informative
#' error messages or warnings.
#'
#' @importFrom stats approx
#' @export

seq_data <- function(data,
type = "linear",
step_count = NULL,
ease = NULL){

stopifnot(is.character(type),
is.numeric(data) || is.matrix(data) || is.data.frame(data) || is.list(data))

if(!is.null(ease))
if(!is.character(ease))
stop("Ease must be a characer string of length 1")

type <- match.arg(type,c("linear","quad","cubic","quart",
"quint","exp","circle","back",
"elastic","sine","bounce","step"))

# Compute normalized time (t) as the y-component
# Time could be any range, but it complicates comparison if
# time range is not bounded. However, you can always
# normalize it to be bounded from [0,1]
if (is.numeric(data)) {
n <- length(data)
} else if (is.data.frame(data) || is.matrix(data)) {
n <- nrow(data)
} else if (is.list(data)) {
n <- unique(lengths(data))
} else {
stop("Unsupported data type: data must be numeric, a data.frame, a matrix, or a list.")
}

from <- min(data)
to <- max(data)

t <- seq(0,1,length.out = n)

# Default sequence
if(type == "linear") {
seq <- from + t*(to-from)
return(seq)
}

# `in` curves it at the start
#`out` will curve the line at the end
#`in_out` will curve the line at both ends
# Keep in mind there are n - 1 critical points
# as polynomials of size n increases.

# Issue warning if 'ease' not set to NULL when type is linear
if (type != "linear" && type != "step") {
ease <- match.arg(ease, c("in", "out", "in_out"))
}

# Compute normalized time
t <- seq(0, 1, length.out = n)

# Linear sequence
if (type == "linear") {
seq <- from + t * (to - from)
return(seq)
}

# Step sequence
if (type == "step") {

# Handle null or invalid step_count
if (is.null(step_count)) {
warning("Step count is 'NULL'. Using default 'step_count' = 4.")
step_count <- 4
}

# Check step_count limits
if (step_count < 1) {
stop("Invalid 'step_count': Minimum number of steps is 1. Provided: ", step_count)
}
if (step_count > n) {
stop("Invalid 'step_count': Number of steps (", step_count,
") cannot exceed the length of the numeric vector (n = ", n, ").")
}

# Warn if 'ease' is provided (not applicable for steps)
if (!is.null(ease) && !is.na(ease)) {
warning("'ease' has no effect on step functions. Step function is not continuous.")
}

# Compute step sequence
smooth_seq <- from + (to - from) * round(step_count * t) / step_count

return(smooth_seq)
}


# What type of sequence and direction to compute
smooth_fashion <- join_char(type,"_",ease)


smooth_fashion <- switch(
smooth_fashion,
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
# Notice how we use base '2' and exponentiate as
# polynomial increases by n. You can use any base you
# like, I chose 2 because that's what I've seen others
# do, and it's the standard as far as I know.
quad_in = t^2,
quad_out = 1-(1 - t)^2,
quad_in_out = ifelse(t < 0.5,
2*t^2,
1 - 0.5*(-2*t+2)^2),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
cubic_in = t^3,
cubic_out = 1 - (1-t)^3,
cubic_in_out = ifelse(t < 0.5,
4*t^3,
1- 0.5*(-2*t+2)^3),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
quart_in = t^4,
quart_out = 1 - (1-t)^4,
quart_in_out = ifelse(t < 0.5,
8*t^4,
1 - 0.5*(-2*t+2)^4),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
quint_in = t^5,
quint_out = 1 - (1-t)^5,
quint_in_out = ifelse(t < 0.5,
16*t^5,
1 - 0.5*(-2*t+2)^5),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
exp_in = 2^(10*t - 10),
exp_out = 1 - 2^(-10*t),
exp_in_out = ifelse(t == 0,0,
ifelse(t == 1,1,
ifelse(t < 0.5,
2^(20*t-10)/2,
(2 - 2^(-20*t+10))/2
))),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
circle_in = 1 - sqrt(1-t^2),
circle_out = sqrt(1 - (t - 1)^2),
circle_in_out = ifelse(t < 0.5,
(1 - sqrt(1 - (2 * t)^2)) / 2,
0.5 * (sqrt(1 - (-2 * t + 2)^2) + 1)),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
back_in = 2.70158*t^3 - 1.70158*t^2,
back_out = 1 + 2.70158* (t-1)^3 + 1.70158*(t-1)^2,
back_in_out = {
k <- 1.70158
k2 <- k * 1.525
ifelse(t < 0.5,
(2*t)^2 * ((k2 + 1) * 2 * t - k2) / 2,
((2*t-2)^2 * ((k2 + 1) * (t * 2 - 2) + k2) + 2) / 2
)
},
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
elastic_in = ifelse(t == 0, 0,
ifelse(t == 1,1,
-(2 ^ (10 * t - 10)) * sin((t * 10 - 10.75) * 2 * pi / 3)
)
),
elastic_out = ifelse(t == 0,0,
ifelse(t ==1,1,
2^(-10*t)*sin((t*10-0.75)*2*pi/3)+1)
),
elastic_in_out = ifelse(
t == 0, 0,
ifelse(t == 1, 1,
ifelse(t < 0.5,
-(2^( 20*t - 10) * sin((20 * t - 11.125) * 2 * pi/4.5)) / 2,
(2^(-20*t + 10) * sin((20 * t - 11.125) * 2 * pi/4.5)) / 2 + 1
))
),
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
sine_in = 1 - cos((t*pi)/2),
sine_out = sin((t*pi)/2),
sine_in_out = -(cos(t*pi)-1)/2,
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
bounce_in = 1 - ifelse((1 - t) < 0.3636,
7.5625 * (1 - t)^2,
ifelse((1 - t) < 0.7273,
7.5625 * ((1 - t) - 1.5 / 2.75)^2 + 0.75,
ifelse((1 - t) < 0.9091,
7.5625 * ((1 - t) - 2.25 / 2.75)^2 + 0.9375,
7.5625 * ((1 - t) - 2.625 / 2.75)^2 + 0.984375))
),
bounce_out = ifelse(t < 0.3636,
7.5625 * t^2,
ifelse(t < 0.7273,
7.5625 * (t - 1.5 / 2.75)^2 + 0.75,
ifelse(t < 0.9091,
7.5625 * (t - 2.25 / 2.75)^2 + 0.9375,
7.5625 * (t - 2.625 / 2.75)^2 + 0.984375))
)
,
bounce_in_out = ifelse(t < 0.5,
0.5 * ifelse(t * 2 < 0.3636,
7.5625 * (2 * t)^2,
ifelse(t * 2 < 0.7273,
7.5625 * ((2 * t) - 1.5 / 2.75)^2 + 0.75,
ifelse(t * 2 < 0.9091,
7.5625 * ((2 * t) - 2.25 / 2.75)^2 + 0.9375,
7.5625 * ((2 * t) - 2.625 / 2.75)^2 + 0.984375))),
0.5 * ifelse((2 * t - 1) < 0.3636,
7.5625 * (2 * t - 1)^2,
ifelse((2 * t - 1) < 0.7273,
7.5625 * ((2 * t - 1) - 1.5 / 2.75)^2 + 0.75,
ifelse((2 * t - 1) < 0.9091,
7.5625 * ((2 * t - 1) - 2.25 / 2.75)^2 + 0.9375,
7.5625 * ((2 * t - 1) - 2.625 / 2.75)^2 + 0.984375))) + 0.5
)
)

smooth_seq <- from + smooth_fashion * (to-from)

return(smooth_seq)
}
9 changes: 5 additions & 4 deletions R/seq_nl.R
Original file line number Diff line number Diff line change
Expand Up @@ -211,10 +211,11 @@ stopifnot(is.character(type))
)
},
#---- --- ---- --- ---- --- ---- --- ----- --- ----#
elastic_in = ifelse(t == 0,0,
ifelse(t == 1,1
-(2^(10*t-10))*sin((t*10-10.75)*2*pi/3))
),
elastic_in = ifelse(t == 0, 0,
ifelse(t == 1,1,
-(2 ^ (10 * t - 10)) * sin((t * 10 - 10.75) * 2 * pi / 3)
)
),
elastic_out = ifelse(t == 0,0,
ifelse(t ==1,1,
2^(-10*t)*sin((t*10-0.75)*2*pi/3)+1)
Expand Down
16 changes: 16 additions & 0 deletions R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,3 +25,19 @@ join_char <- function(first,

return(new_string)
}

get_mode <- function(.x) {
.x <- unique(.x)
x_not_na <- .x[which(!is.na(.x))]
if(length(x_not_na) > 0) {
tab <- tabulate(match(.x, x_not_na))
candidates <- x_not_na[tab == max(tab)]
if (is.logical(.x)) {
any(candidates) # return TRUE if any true. max returns an integer
} else {
max(candidates) # return highest (ie max) value
}
} else {
.x[NA_integer_]
}
}
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
status](https://www.r-pkg.org/badges/version/sequentially)](https://CRAN.R-project.org/package=sequentially)
[![stability-wip](https://img.shields.io/badge/stability-wip-lightgrey.svg)](https://github.com/mkenney/software-guides/blob/master/STABILITY-BADGES.md#work-in-progress)
[![Codecov test
coverage](https://codecov.io/gh/jpmonteagudo28/sequentially/graph/badge.svg)](https://app.codecov.io/gh/jpmonteagudo28/sequentially)
coverage](https://codecov.io/gh/jpmonteagudo28/sequentially/branch/main/graph/badge.svg)](https://app.codecov.io/gh/jpmonteagudo28/sequentially?branch=main)

<!-- badges: end -->

Expand Down
Loading

0 comments on commit 1b113c0

Please sign in to comment.