For a detailed overview of how to use trimr, please see the vignettes.
A stable release of trimr is available on CRAN. To install this, use:
install.packages("trimr")
To install the latest version of trimr (i.e., the development version of next release), install devtools, and install directly from GitHub by using:
# install devtools
install.packages("devtools")
# install trimr from GitHub
devools::install_github("JimGrange/trimr")
trimr is an R package that implements most commonly-used response time trimming methods, allowing the user to go from a raw data file to a finalised data file ready for inferential statistical analysis.
The trimming functions available in trimr fall broadly into three families:
- Absolute Value Criterion
- Standard Deviation Criterion
- Recursive / Moving Criterion
The latter implements the methods first suggsted by Van Selst & Jolicoeur (1994).
In the example below, we go from a data frame containing data from 32 participants (in total, 20,518 trials) to a trimmed data set showing the mean trimmed RT for each experimental condition & participant using the modified recursive trimming procedure of Van Selst & Jolicoeur (1994):
# load trimr's library
library(trimr)
# load the example data that ships with trimr
data(exampleData)
# look at the top of the example raw data
head(exampleData)
#> participant condition rt accuracy
#> 1 1 Switch 1660 1
#> 2 1 Switch 913 1
#> 3 1 Repeat 2312 1
#> 4 1 Repeat 754 1
#> 5 1 Switch 3394 1
#> 6 1 Repeat 930 1
# perform the trimming
trimmedData <- modifiedRecursive(data = exampleData, minRT = 150, digits = 0)
# look at the trimmedData
trimmedData
#> participant Switch Repeat
#> 1 1 792 691
#> 2 2 1036 927
#> 3 3 958 716
#> 4 4 1000 712
#> 5 5 1107 827
#> 6 6 1309 1049
#> 7 7 929 777
#> 8 8 976 865
#> 9 9 848 635
#> 10 10 735 619
#> 11 11 1008 900
#> 12 12 846 587
#> 13 13 823 688
#> 14 14 965 726
#> 15 15 1089 760
#> 16 16 845 645
#> 17 17 677 587
#> 18 18 845 718
#> 19 19 637 566
#> 20 20 934 671
#> 21 21 730 625
#> 22 22 1119 813
#> 23 23 752 627
#> 24 24 584 565
#> 25 25 576 581
#> 26 26 709 613
#> 27 27 729 688
#> 28 28 687 623
#> 29 29 528 536
#> 30 30 690 627
#> 31 31 921 859
#> 32 32 604 592
To install the package from GitHub, you need the devools package:
install.packages("devtools")
library(devtools)
Then trimr can be directly installed:
devtools::install_github("JimGrange/trimr")
Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47 (A), 631–650.