forked from bschn2/rainforest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rfv2_core.c
836 lines (726 loc) · 25.2 KB
/
rfv2_core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// RainForest hash algorithm
// Author: Bill Schneider
// Created: Feb 13th, 2018
// Updated: Apr 21th, 2019
//
// RainForest uses native integer operations which are extremely fast on
// modern 64-bit processors, significantly slower on 32-bit processors such
// as GPUs, and extremely slow if at all implementable on FPGAs and ASICs.
// It makes an intensive use of the L1 cache to maintain a heavy intermediary
// state favoring modern CPUs compared to GPUs (small L1 cache shared by many
// shaders) or FPGAs (very hard to implement the required low-latency cache)
// when scanning ranges for nonces. Finally, it uses 96 MB of work
// area per thread in order to incur a cost to highly parallel processors such
// as high-end GPUs. The purpose is to create a fair balance between all mining
// equipments, from mobile phones to extreme performance GPUs and to rule out
// farming factories relying on ASICs, FPGAs, or any other very expensive
// solution. The CRC32 instruction is used a lot as it is extremely fast on
// low-power ARM chips and allows such devices to rival high-end PCs mining
// performance. Note that CRC32 is not used for security at all, only to
// disturb data.
//
// Build instructions on Ubuntu 16.04 to 18.04 :
// - on x86: use gcc -march=native or -maes to enable AES-NI
// - on ARMv8: use gcc -march=native or -march=armv8-a+crypto+crc to enable
// CRC32 and AES extensions.
//
// Note: always use the same options to build all files!
//
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "rfv2.h"
// these archs are fine with unaligned reads
#if defined(__x86_64__)||defined(__aarch64__)
#define RF_UNALIGNED_LE64
#define RF_UNALIGNED_LE32
#elif defined(__i386__)||defined(__ARM_ARCH_7A__)
#define RF_UNALIGNED_LE32
#endif
#define RFV2_INIT_CRC 20180213
#ifndef RF_ALIGN
#ifdef _MSC_VER
#define RF_ALIGN(x) __declspec(align(x))
#else
#define RF_ALIGN(x) __attribute__((aligned(x)))
#endif
#endif
// for aes2r_encrypt()
#include "rf_aes2r.c"
// for rf_crc32_32()
#include "rf_crc32.c"
// this seems necessary only for gcc, otherwise hash is bogus
#ifdef _MSC_VER
typedef uint8_t rf_u8;
typedef uint16_t rf_u16;
typedef uint32_t rf_u32;
typedef uint64_t rf_u64;
#else
typedef __attribute__((may_alias)) uint8_t rf_u8;
typedef __attribute__((may_alias)) uint16_t rf_u16;
typedef __attribute__((may_alias)) uint32_t rf_u32;
typedef __attribute__((may_alias)) uint64_t rf_u64;
#endif
#define RFV2_RAMBOX_HIST 1536
typedef union {
rf_u8 b[32];
rf_u16 w[16];
rf_u32 d[8];
rf_u64 q[4];
} rf_hash256_t;
typedef struct RF_ALIGN(16) rfv2_ctx {
uint32_t word; // LE pending message
uint32_t len; // total message length
uint32_t crc;
uint16_t changes; // must remain lower than RFV2_RAMBOX_HIST, 65535=R/O
uint16_t left_bits; // adjust rambox probability
uint64_t *rambox;
uint32_t rb_o; // rambox offset
uint32_t rb_l; // rambox length
rf_hash256_t RF_ALIGN(32) hash;
uint32_t hist[RFV2_RAMBOX_HIST];
uint64_t prev[RFV2_RAMBOX_HIST];
} rfv2_ctx_t;
// the table is used as an 8 bit-aligned array of uint64_t for the first word,
// and as a 16 bit-aligned array of uint64_t for the second word. It is filled
// with the sha256 of "RainForestProCpuAntiAsic", iterated over and over until
// the table is filled. The highest offset being ((uint16_t *)table)[255] we
// need to add 6 extra bytes at the end to read an uint64_t. Maybe calculated
// on a UNIX system with this loop :
//
// ref="RainForestProCpuAntiAsic"
// for ((i=0;i<18;i++)); do
// set $(echo -n $ref|sha256sum)
// echo $1|sed 's/\(..\)/0x\1,/g'
// ref=$(printf $(echo $1|sed 's/\(..\)/\\x\1/g'))
// done
static const uint8_t rfv2_table[256 * 2 + 6] = {
0x8e,0xc1,0xa8,0x04,0x38,0x78,0x7c,0x54,0x29,0x23,0x1b,0x78,0x9f,0xf9,0x27,0x54,
0x11,0x78,0x95,0xb6,0xaf,0x78,0x45,0x16,0x2b,0x9e,0x91,0xe8,0x97,0x25,0xf8,0x63,
0x82,0x56,0xcf,0x48,0x6f,0x82,0x14,0x0d,0x61,0xbe,0x47,0xd1,0x37,0xee,0x30,0xa9,
0x28,0x1e,0x4b,0xbf,0x07,0xcd,0x41,0xdf,0x23,0x21,0x12,0xb8,0x81,0x99,0x1d,0xe6,
0x68,0xcf,0xfa,0x2d,0x8e,0xb9,0x88,0xa7,0x15,0xce,0x9e,0x2f,0xeb,0x1b,0x0f,0x67,
0x20,0x68,0x6c,0xa9,0x5d,0xc1,0x7c,0x76,0xdf,0xbd,0x98,0x61,0xb4,0x14,0x65,0x40,
0x1e,0x72,0x51,0x74,0x93,0xd3,0xad,0xbe,0x46,0x0a,0x25,0xfb,0x6a,0x5e,0x1e,0x8a,
0x5a,0x03,0x3c,0xab,0x12,0xc2,0xd4,0x07,0x91,0xab,0xc9,0xdf,0x92,0x2c,0x85,0x6a,
0xa6,0x25,0x1e,0x66,0x50,0x26,0x4e,0xa8,0xbd,0xda,0x88,0x1b,0x95,0xd4,0x00,0xeb,
0x0d,0x1c,0x9b,0x3c,0x86,0xc7,0xb2,0xdf,0xb4,0x5a,0x36,0x15,0x8e,0x04,0xd2,0x54,
0x79,0xd2,0x3e,0x3d,0x99,0x50,0xa6,0x12,0x4c,0x32,0xc8,0x51,0x14,0x4d,0x4b,0x0e,
0xbb,0x17,0x80,0x8f,0xa4,0xc4,0x99,0x72,0xd7,0x14,0x4b,0xef,0xed,0x14,0xe9,0x17,
0xfa,0x9b,0x5d,0x37,0xd6,0x2f,0xef,0x02,0xd6,0x71,0x0a,0xbd,0xc5,0x40,0x11,0x90,
0x90,0x4e,0xb4,0x4c,0x72,0x51,0x7a,0xd8,0xba,0x30,0x4d,0x8c,0xe2,0x11,0xbb,0x6d,
0x4b,0xbc,0x6f,0x14,0x0c,0x9f,0xfa,0x5e,0x66,0x40,0x45,0xcb,0x7d,0x1b,0x3a,0xc5,
0x5e,0x9c,0x1e,0xcc,0xbd,0x16,0x3b,0xcf,0xfb,0x2a,0xd2,0x08,0x2a,0xf8,0x3d,0x46,
0x93,0x90,0xb3,0x66,0x81,0x34,0x7f,0x6d,0x9b,0x8c,0x99,0x03,0xc5,0x27,0xa3,0xd9,
0xce,0x90,0x88,0x0f,0x55,0xc3,0xa1,0x60,0x53,0xc8,0x0d,0x25,0xae,0x61,0xd9,0x72,
0x48,0x1d,0x6c,0x61,0xd2,0x87,0xdd,0x3d,0x23,0xf5,0xde,0x93,0x39,0x4c,0x43,0x9a,
0xf9,0x37,0xf2,0x61,0xd7,0xf8,0xea,0x65,0xf0,0xf1,0xde,0x3f,0x05,0x57,0x83,0x81,
0xde,0x02,0x62,0x49,0xd4,0x32,0x7e,0x4a,0xd4,0x9f,0x40,0x7e,0xb9,0x91,0xb1,0x35,
0xf7,0x62,0x3f,0x65,0x9e,0x4d,0x2b,0x10,0xde,0xd4,0x77,0x64,0x0f,0x84,0xad,0x92,
0xe7,0xa3,0x8a,0x10,0xc1,0x14,0xeb,0x57,0xc4,0xad,0x8e,0xc2,0xc7,0x32,0xa3,0x7e,
0x50,0x1f,0x7c,0xbb,0x2e,0x5f,0xf5,0x18,0x22,0xea,0xec,0x9d,0xa4,0x77,0xcd,0x85,
0x04,0x2f,0x20,0x61,0x72,0xa7,0x0c,0x92,0x06,0x4d,0x01,0x70,0x9b,0x35,0xa1,0x27,
0x32,0x6e,0xb9,0x78,0xe0,0xaa,0x5f,0x91,0xa6,0x51,0xe3,0x63,0xf8,0x97,0x2f,0x60,
0xd9,0xfb,0x15,0xe5,0x59,0xcf,0x31,0x3c,0x61,0xc7,0xb5,0x61,0x2a,0x6b,0xdd,0xd1,
0x09,0x70,0xc0,0xcf,0x94,0x7a,0xcc,0x31,0x94,0xb1,0xa2,0xf6,0x95,0xc0,0x38,0x3d,
0xef,0x19,0x30,0x70,0xdd,0x62,0x32,0x8f,0x7c,0x30,0xb9,0x18,0xf8,0xe7,0x8f,0x0a,
0xaa,0xb6,0x00,0x86,0xf2,0xe0,0x30,0x5f,0xa2,0xe8,0x00,0x8e,0x05,0xa0,0x22,0x18,
0x9f,0x83,0xd4,0x3a,0x85,0x10,0xb9,0x51,0x8d,0x07,0xf0,0xb3,0xcd,0x9b,0x55,0xa1,
0x14,0xce,0x0f,0xb2,0xcf,0xb8,0xce,0x2d,0xe6,0xe8,0x35,0x32,0x1f,0x22,0xb5,0xec,
0xd0,0xb9,0x72,0xa8,0xb4,0x97
//,0x6e,0x0a,0x47,0xcd,0x5a,0xf0,0xdc,0xeb,0xfd,0x46,
//0xe5,0x6e,0x83,0xe6,0x1a,0xcc,0x4a,0x8b,0xa5,0x28,0x9e,0x50,0x48,0xa9,0xa2,0x6b,
};
// this is made of the last iteration of the rfv2_table (18th transformation)
static const uint8_t rfv2_iv[32] = {
0x78,0xe9,0x90,0xd3,0xb3,0xc8,0x9b,0x7b,0x0a,0xc4,0x86,0x6e,0x4e,0x38,0xb3,0x6b,
0x33,0x68,0x7c,0xed,0x73,0x35,0x4b,0x0a,0x97,0x25,0x4c,0x77,0x7a,0xaa,0x61,0x1b
};
/* le32 memory to host representation */
static inline uint32_t rf_le32toh(uint8_t *x)
{
return x[0] + (x[1] << 8) + (x[2] << 16) + (x[3] << 24);
}
// mix the current state with the crc and return the new crc
static inline uint32_t rf_crc32x4(rf_u32 *state, uint32_t crc)
{
crc = state[0] = rf_crc32_32(crc, state[0]);
crc = state[1] = rf_crc32_32(crc, state[1]);
crc = state[2] = rf_crc32_32(crc, state[2]);
crc = state[3] = rf_crc32_32(crc, state[3]);
return crc;
}
// add to _msg_ its own crc32. use -mcpu=cortex-a53+crc to enable native CRC
// instruction on ARM.
static inline uint64_t rf_add64_crc32(uint64_t msg)
{
return msg + rf_crc32_64(0, msg);
}
// read 64 bit from possibly unaligned memory address _p_ in little endian mode
static inline uint64_t rf_memr64(const uint8_t *p)
{
#ifdef RF_UNALIGNED_LE64
return *(uint64_t *)p;
#else
uint64_t ret;
int byte;
for (ret = byte = 0; byte < 8; byte++)
ret += (uint64_t)p[byte] << (byte * 8);
return ret;
#endif
}
// return rainforest lower word entry for index
static inline uint64_t rf_wltable(uint8_t index)
{
return rf_memr64(&rfv2_table[index]);
}
// return rainforest upper word entry for _index_
static inline uint64_t rf_whtable(uint8_t index)
{
return rf_memr64(&rfv2_table[index * 2]);
}
// rotate left vector _v_ by _bits_ bits
static inline uint64_t rf_rotl64(uint64_t v, uint64_t bits)
{
#if !defined(RF_NOASM) && defined(__x86_64__)
__asm__("rol %1, %0" : "+r"(v) : "c"((uint8_t)bits));
#else
#if !defined(__ARM_ARCH_8A) && !defined(__x86_64__)
bits &= 63;
#endif
v = (v << bits) | (v >> (-bits & 63));
#endif
return v;
}
// rotate right vector _v_ by _bits_ bits
static inline uint64_t rf_rotr64(uint64_t v, uint64_t bits)
{
#if !defined(RF_NOASM) && defined(__x86_64__)
__asm__("ror %1, %0" : "+r"(v) : "c"((uint8_t)bits));
#else
#if !defined(__ARM_ARCH_8A) && !defined(__x86_64__)
bits &= 63;
#endif
v = (v >> bits) | (v << (-bits & 63));
#endif
return v;
}
// reverse all bytes in the word _v_
static inline uint64_t rf_bswap64(uint64_t v)
{
#if !defined(RF_NOASM) && defined(__x86_64__) && !defined(_MSC_VER)
__asm__("bswapq %0":"+r"(v));
#elif !defined(RF_NOASM) && defined(__aarch64__)
__asm__("rev %0,%0\n":"+r"(v));
#else
v = ((v & 0xff00ff00ff00ff00ULL) >> 8) | ((v & 0x00ff00ff00ff00ffULL) << 8);
v = ((v & 0xffff0000ffff0000ULL) >> 16) | ((v & 0x0000ffff0000ffffULL) << 16);
v = (v >> 32) | (v << 32);
#endif
return v;
}
// reverse all bits in the word _v_
static inline uint64_t rf_revbit64(uint64_t v)
{
#if !defined(RF_NOASM) && defined(__aarch64__)
__asm__ volatile("rbit %0, %1\n" : "=r"(v) : "r"(v));
#else
v = ((v & 0xaaaaaaaaaaaaaaaaULL) >> 1) | ((v & 0x5555555555555555ULL) << 1);
v = ((v & 0xccccccccccccccccULL) >> 2) | ((v & 0x3333333333333333ULL) << 2);
v = ((v & 0xf0f0f0f0f0f0f0f0ULL) >> 4) | ((v & 0x0f0f0f0f0f0f0f0fULL) << 4);
#if !defined(RF_NOASM) && defined(__x86_64__)
__asm__("bswapq %0" : "=r"(v) : "0"(v));
#else
v = ((v & 0xff00ff00ff00ff00ULL) >> 8) | ((v & 0x00ff00ff00ff00ffULL) << 8);
v = ((v & 0xffff0000ffff0000ULL) >> 16) | ((v & 0x0000ffff0000ffffULL) << 16);
v = (v >> 32) | (v << 32);
#endif
#endif
return v;
}
#if !defined(__GNUC__) || (__GNUC__ < 4 || __GNUC__ == 4 && __GNUC_MINOR__ < 7)
#if !defined(__GNUC__) // also covers clang
int __builtin_clzll(uint64_t x)
{
uint64_t y;
int n = 64;
y = x >> 32; if (y) { x = y; n -= 32; }
y = x >> 16; if (y) { x = y; n -= 16; }
y = x >> 8; if (y) { x = y; n -= 8; }
y = x >> 4; if (y) { x = y; n -= 4; }
y = x >> 2; if (y) { x = y; n -= 2; }
y = x >> 1; if (y) { x = y; n -= 1; }
return n - x;
}
#endif
static inline int __builtin_clrsbll(int64_t x)
{
if (x < 0)
return __builtin_clzll(~(x << 1));
else
return __builtin_clzll(x << 1);
}
#endif
// write (_x_,_y_) at cell _cell_ for offset _ofs_
static inline void rf_w128(uint64_t *cell, size_t ofs, uint64_t x, uint64_t y)
{
#if !defined(RF_NOASM) && (defined(__ARM_ARCH_8A) || defined(__AARCH64EL__))
// 128 bit at once is faster when exactly two parallelizable instructions are
// used between two calls to keep the pipe full.
__asm__ volatile("stp %0, %1, [%2,%3]\n\t"
: /* no output */
: "r"(x), "r"(y), "r" (cell), "I" (ofs * 8));
#else
cell[ofs + 0] = x;
cell[ofs + 1] = y;
#endif
}
// lookup _old_ in _rambox_, update it and perform a substitution if a matching
// value is found.
static inline uint64_t rfv2_rambox(rfv2_ctx_t *ctx, uint64_t old)
{
uint64_t *p, k;
uint32_t idx;
k = old;
old = rf_add64_crc32(old);
old ^= rf_revbit64(k);
if (__builtin_clrsbll(old) >= ctx->left_bits) {
idx = ctx->rb_o + old % ctx->rb_l;
p = &ctx->rambox[idx];
k = *p;
old += rf_rotr64(k, (uint8_t)(old / ctx->rb_l));
if (ctx->changes != 65535) {
*p = old;
if (ctx->changes < RFV2_RAMBOX_HIST) {
ctx->hist[ctx->changes] = idx;
ctx->prev[ctx->changes] = k;
ctx->changes++;
}
}
}
return old;
}
// initialize the ram box
void rfv2_raminit(void *area)
{
uint64_t pat1 = 0x0123456789ABCDEFULL;
uint64_t pat2 = 0xFEDCBA9876543210ULL;
uint64_t pat3;
uint32_t pos;
uint64_t *rambox = (uint64_t *)area;
// Note: no need to mask the higher bits on armv8 nor x86 :
//
// From ARMv8's ref manual :
// The register that is specified for a shift can be 32-bit or
// 64-bit. The amount to be shifted can be specified either as
// an immediate, that is up to register size minus one, or by
// a register where the value is taken only from the bottom five
// (modulo-32) or six (modulo-64) bits.
//
// Here we rotate pat2 by pat1's bits and put it into pat1, and in
// parallel we rotate pat1 by pat2's bits and put it into pat2. Thus
// the two data blocks are exchanged in addition to being rotated.
// What is stored each time is the previous and the rotated blocks,
// which only requires one rotate and a register rename.
for (pos = 0; pos < RFV2_RAMBOX_SIZE; pos += 16) {
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x111;
rf_w128(rambox + pos, 0, pat1, pat3);
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x222;
rf_w128(rambox + pos, 2, pat2, pat3);
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x333;
rf_w128(rambox + pos, 4, pat1, pat3);
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x444;
rf_w128(rambox + pos, 6, pat2, pat3);
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x555;
rf_w128(rambox + pos, 8, pat1, pat3);
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x666;
rf_w128(rambox + pos, 10, pat2, pat3);
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x777;
rf_w128(rambox + pos, 12, pat1, pat3);
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x888;
rf_w128(rambox + pos, 14, pat2, pat3);
}
}
#ifdef RF_DEBUG_RAMBOX
// verify the ram box
static void rfv2_ram_test(const void *area)
{
uint64_t pat1 = 0x0123456789ABCDEFULL;
uint64_t pat2 = 0xFEDCBA9876543210ULL;
uint64_t pat3;
uint32_t pos;
const uint64_t *rambox = (const uint64_t *)area;
// Note: no need to mask the higher bits on armv8 nor x86 :
//
// From ARMv8's ref manual :
// The register that is specified for a shift can be 32-bit or
// 64-bit. The amount to be shifted can be specified either as
// an immediate, that is up to register size minus one, or by
// a register where the value is taken only from the bottom five
// (modulo-32) or six (modulo-64) bits.
//
// Here we rotate pat2 by pat1's bits and put it into pat1, and in
// parallel we rotate pat1 by pat2's bits and put it into pat2. Thus
// the two data blocks are exchanged in addition to being rotated.
// What is stored each time is the previous and the rotated blocks,
// which only requires one rotate and a register rename.
for (pos = 0; pos < RFV2_RAMBOX_SIZE; pos += 16) {
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x111;
if (rambox[pos + 0] != pat1)
abort();
if (rambox[pos + 1] != pat3)
abort();
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x222;
if (rambox[pos + 2] != pat2)
abort();
if (rambox[pos + 3] != pat3)
abort();
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x333;
if (rambox[pos + 4] != pat1)
abort();
if (rambox[pos + 5] != pat3)
abort();
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x444;
if (rambox[pos + 6] != pat2)
abort();
if (rambox[pos + 7] != pat3)
abort();
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x555;
if (rambox[pos + 8] != pat1)
abort();
if (rambox[pos + 9] != pat3)
abort();
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x666;
if (rambox[pos + 10] != pat2)
abort();
if (rambox[pos + 11] != pat3)
abort();
pat3 = pat1;
pat1 = rf_rotr64(pat2, (uint8_t)pat3) + 0x777;
if (rambox[pos + 12] != pat1)
abort();
if (rambox[pos + 13] != pat3)
abort();
pat3 = pat2;
pat2 = rf_rotr64(pat1, (uint8_t)pat3) + 0x888;
if (rambox[pos + 14] != pat2)
abort();
if (rambox[pos + 15] != pat3)
abort();
}
}
#endif
// return p/q into p and rev(rev(q)+p) into q
static inline void rfv2_div_mod(uint64_t *p, uint64_t *q)
{
uint64_t x = *p;
*p = x / *q;
#if !defined(RF_NOASM) && !defined(_MSC_VER)
__asm__ volatile("" :: "r"(*p)); // force to place the div first
#endif
*q = rf_revbit64(rf_revbit64(*q)+x);
}
// exec the div/mod box. _v0_ and _v1_ must be aligned.
static inline void rfv2_divbox(rf_u64 *v0, rf_u64 *v1)
{
uint64_t pl, ql, ph, qh;
//---- low word ---- ---- high word ----
pl = ~*v0; ph = ~*v1;
ql = rf_bswap64(*v0); qh = rf_bswap64(*v1);
if (!pl || !ql) { pl = ql = 0; }
else if (pl > ql) rfv2_div_mod(&pl, &ql);
else rfv2_div_mod(&ql, &pl);
if (!ph || !qh) { ph = qh = 0; }
else if (ph > qh) rfv2_div_mod(&ph, &qh);
else rfv2_div_mod(&qh, &ph);
pl += qh; ph += ql;
*v0 -= pl; *v1 -= ph;
}
// exec the rotation/add box. _v0_ and _v1_ must be aligned.
static inline void rfv2_rotbox(rf_u64 *v0, rf_u64 *v1, uint8_t b0, uint8_t b1)
{
uint64_t l, h;
//---- low word ---- ---- high word ----
l = *v0; h = *v1;
l = rf_rotr64(l, b0); h = rf_rotl64(h, b1);
l += rf_wltable(b0); h += rf_whtable(b1);
b0 = (uint8_t)l; b1 = (uint8_t)h;
l = rf_rotl64(l, b1); h = rf_rotr64(h, b0);
b0 = (uint8_t)l; b1 = (uint8_t)h;
l = rf_rotr64(l, b1); h = rf_rotl64(h, b0);
*v0 = l; *v1 = h;
}
// mix the current state with the current crc
static inline uint32_t rfv2_scramble(rfv2_ctx_t *ctx)
{
return ctx->crc = rf_crc32x4(ctx->hash.d, ctx->crc);
}
// mix the state with the crc and the pending text, and update the crc
static inline void rfv2_inject(rfv2_ctx_t *ctx)
{
ctx->crc =
(ctx->len & 3) == 0 ? rf_crc32_32(rfv2_scramble(ctx), ctx->word):
(ctx->len & 3) == 3 ? rf_crc32_24(rfv2_scramble(ctx), ctx->word):
(ctx->len & 3) == 2 ? rf_crc32_16(rfv2_scramble(ctx), ctx->word):
rf_crc32_8(rfv2_scramble(ctx), ctx->word);
ctx->word = 0;
}
// rotate the hash by 32 bits. Not using streaming instructions (SSE/NEON) is
// faster because the compiler can follow moves an use register renames.
static inline void rfv2_rot32x256(rf_hash256_t *hash)
{
#if defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_ARCH_7A__)
uint32_t t0, t1, t2;
t0 = hash->d[0];
t1 = hash->d[1];
t2 = hash->d[2];
hash->d[1] = t0;
hash->d[2] = t1;
t0 = hash->d[3];
t1 = hash->d[4];
hash->d[3] = t2;
hash->d[4] = t0;
t2 = hash->d[5];
t0 = hash->d[6];
hash->d[5] = t1;
hash->d[6] = t2;
t1 = hash->d[7];
hash->d[7] = t0;
hash->d[0] = t1;
#else
uint32_t tmp = hash->d[7];
memmove(&hash->d[1], &hash->d[0], 28);
hash->d[0] = tmp;
#endif
}
// encrypt the first 128 bits of the hash using the last 128 bits as the key
static inline void rfv2_aesenc(rfv2_ctx_t *ctx)
{
aes2r_encrypt((uint8_t *)ctx->hash.b, (uint8_t *)ctx->hash.b + 16);
}
// each new round consumes exactly 32 bits of text at once and perturbates
// 128 bits of output, 96 of which overlap with the previous round, and 32
// of which are new. With 5 rounds or more each output bit depends on every
// input bit.
static inline void rfv2_one_round(rfv2_ctx_t *ctx)
{
uint64_t carry;
rfv2_rot32x256(&ctx->hash);
carry = ((uint64_t)ctx->len << 32) + ctx->crc;
rfv2_scramble(ctx);
rfv2_divbox(ctx->hash.q, ctx->hash.q + 1);
rfv2_scramble(ctx);
carry = rfv2_rambox(ctx, carry);
rfv2_rotbox(ctx->hash.q, ctx->hash.q + 1, (uint8_t)(carry), (uint8_t)(carry >> 56));
rfv2_scramble(ctx);
rfv2_divbox(ctx->hash.q, ctx->hash.q + 1);
rfv2_scramble(ctx);
carry = rfv2_rambox(ctx, carry);
rfv2_rotbox(ctx->hash.q, ctx->hash.q + 1, (uint8_t)(carry >> 8), (uint8_t)(carry >> 48));
rfv2_scramble(ctx);
rfv2_divbox(ctx->hash.q, ctx->hash.q + 1);
rfv2_scramble(ctx);
carry = rfv2_rambox(ctx, carry);
rfv2_rotbox(ctx->hash.q, ctx->hash.q + 1, (uint8_t)(carry >> 16), (uint8_t)(carry >> 40));
rfv2_scramble(ctx);
rfv2_divbox(ctx->hash.q, ctx->hash.q + 1);
rfv2_scramble(ctx);
carry = rfv2_rambox(ctx, carry);
rfv2_rotbox(ctx->hash.q, ctx->hash.q + 1, (uint8_t)(carry >> 24), (uint8_t)(carry >> 32));
rfv2_scramble(ctx);
rfv2_divbox(ctx->hash.q, ctx->hash.q + 1);
rfv2_inject(ctx);
rfv2_aesenc(ctx);
rfv2_scramble(ctx);
}
// initialize the hash state
static void rfv2_init(rfv2_ctx_t *ctx, uint32_t seed, void *rambox)
{
memcpy(ctx->hash.b, rfv2_iv, sizeof(ctx->hash.b));
ctx->crc = seed;
ctx->word = ctx->len = 0;
ctx->changes = 0;
ctx->rb_o = 0;
ctx->rb_l = RFV2_RAMBOX_SIZE;
ctx->rambox = (uint64_t *)rambox;
}
// update the hash context _ctx_ with _len_ bytes from message _msg_
static inline void rfv2_update(rfv2_ctx_t *ctx, const void *msg, size_t len)
{
const uint8_t *msg8 = (uint8_t *)msg;
while (len > 0) {
#ifdef RF_UNALIGNED_LE32
if (!(ctx->len & 3) && len >= 4) {
ctx->word = *(uint32_t *)msg8;
ctx->len += 4;
rfv2_one_round(ctx);
msg8 += 4;
len -= 4;
continue;
}
#endif
ctx->word |= ((uint32_t)*msg8++) << (8 * (ctx->len++ & 3));
len--;
if (!(ctx->len & 3))
rfv2_one_round(ctx);
}
}
// pad to the next 256-bit (32 bytes) boundary
static inline void rfv2_pad256(rfv2_ctx_t *ctx)
{
const uint8_t pad256[32] = { 0, };
uint32_t pad;
pad = (32 - ctx->len) & 0xF;
if (pad)
rfv2_update(ctx, pad256, pad);
}
// finalize the hash and copy the result into _out_ if not null (256 bits)
static inline void rfv2_final(void *out, rfv2_ctx_t *ctx)
{
// always run 5 extra rounds to complete the last 128 bits.
// the 5th one is because the last processed block is only in
// the ctx and was not mixed yet.
rfv2_one_round(ctx);
rfv2_one_round(ctx);
rfv2_one_round(ctx);
rfv2_one_round(ctx);
rfv2_one_round(ctx);
if (out)
memcpy(out, ctx->hash.b, 32);
}
// compute an integer-based rough approximation of 1+256*(abs(sin(x/16)^3)+1)
// which does not depend on a floating point implementation. The period of the
// input is 2^32.
static unsigned int sin_scaled(unsigned int x)
{
int i;
i = ((x * 42722829) >> 24) - 128;
x = 15 * i * i * abs(i); // 0 to 15<<21
x = (x + (x >> 4)) >> 17;
return 257 - x;
}
// hash _len_ bytes from _in_ into _out_, using _seed_
// _rambox_ must be either NULL or a pointer to an area RFV2_RAMBOX_SIZE*8 bytes
// long preinitialized with rfv2_rambox_init(). If _rambox_ is NULL but _rambox_template_
// is set, it will be initialized from this rambox_template using memcpy().
// The function returns 0 on success or -1 on allocation failure if rambox is
// NULL.
int rfv2_hash2(void *out, const void *in, size_t len, void *rambox, const void *rambox_template, uint32_t seed)
{
rfv2_ctx_t ctx;
unsigned int loop, loops;
int alloc_rambox = (rambox == NULL);
uint32_t msgh;
if (alloc_rambox) {
rambox = malloc(RFV2_RAMBOX_SIZE * 8);
if (rambox == NULL)
return -1;
if (rambox_template)
memcpy(rambox, rambox_template, RFV2_RAMBOX_SIZE * 8);
else
rfv2_raminit(rambox);
}
//rfv2_ram_test(rambox);
rfv2_init(&ctx, seed, rambox);
msgh = rf_crc32_mem(0, in, len);
ctx.rb_o = msgh % (ctx.rb_l / 2);
ctx.rb_l = (ctx.rb_l / 2 - ctx.rb_o) * 2;
loops = sin_scaled(msgh);
if (loops >= 128)
ctx.left_bits = 4;
else if (loops >= 64)
ctx.left_bits = 3;
else if (loops >= 32)
ctx.left_bits = 2;
else if (loops >= 16)
ctx.left_bits = 1;
else
ctx.left_bits = 0;
for (loop = 0; loop < loops; loop++) {
rfv2_update(&ctx, in, len);
// pad to the next 256 bit boundary
rfv2_pad256(&ctx);
}
rfv2_final(out, &ctx);
if (alloc_rambox)
free(rambox);
else if (ctx.changes == RFV2_RAMBOX_HIST) {
//printf("changes=%d\n", ctx.changes);
rfv2_raminit(rambox);
}
else if (ctx.changes > 0) {
//printf("changes=%d\n", ctx.changes);
loops = ctx.changes;
do {
loops--;
ctx.rambox[ctx.hist[loops]] = ctx.prev[loops];
} while (loops);
//rfv2_ram_test(rambox);
}
return 0;
}
// hash _len_ bytes from _in_ into _out_
int rfv2_hash(void *out, const void *in, size_t len, void *rambox, const void *rambox_template)
{
return rfv2_hash2(out, in, len, rambox, rambox_template, RFV2_INIT_CRC);
}
/* scans nonces from <min> to <max> applying them to message <msg> and stopping
* once a hash gives a result at least as good as <target>. It uses <rambox>,
* which must have been pre-initialized, and leaves the resulting hash in
* <hash> which must contain at least 32 bytes and be 32-bit aligned. It
* returns zero if no solution is found, otherwise 1. It only works with 32-bit
* aligned 80-byte block headers in big endian format and places the nonce in
* big endian format at the end of the message to hash it. In case of success,
* the caller has to extract the nonce from the message. It also stops if
* <stop> is non-NULL and the location it points to contains a non-null value
* (used to interrupt scanning by another thread).
*/
int rfv2_scan_hdr(char *msg, void *rambox, uint32_t *hash, uint32_t target, uint32_t min, uint32_t max, volatile char *stop)
{
uint32_t msgh, msgh_init, nonce;
rfv2_ctx_t ctx;
// pre-compute the hash state based on the constant part of the header
msgh_init = rf_crc32_mem(0, msg, 76);
for (nonce = min;; nonce++) {
msg[76] = nonce >> 24;
msg[77] = nonce >> 16;
msg[78] = nonce >> 8;
msg[79] = nonce;
msgh = rf_crc32_mem(msgh_init, msg + 76, 4);
if (sin_scaled(msgh) != 2)
goto next;
rfv2_init(&ctx, RFV2_INIT_CRC, rambox);
ctx.changes = 65535; // mark the rambox read-only
ctx.rb_o = msgh % (ctx.rb_l / 2);
ctx.rb_l = (ctx.rb_l / 2 - ctx.rb_o) * 2;
/* first loop */
rfv2_update(&ctx, msg, 80);
rfv2_pad256(&ctx);
/* second loop */
rfv2_update(&ctx, msg, 80);
rfv2_pad256(&ctx);
/* final */
rfv2_final(hash, &ctx);
if (rf_le32toh((uint8_t *)(hash + 7)) <= target)
return 1;
next:
if (nonce == max)
return 0;
if (stop && *stop)
return 0;
}
}