Skip to content

jazzystring1/react-native-tensorflow-lite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

react-native-tensorflow-lite

A react native library for running Tensorflow Lite Image Recognition on Android app.

Installing

$ npm install react-native-tensorflow-lite --save

Linking

$ react-native link react-native-tensorflow-lite

Converting your model to tflite format

Follow this guide: https://www.tensorflow.org/lite/convert/cmdline_examples

Android

  • Open up android/app/src/main/java/[...]/MainActivity.java
  • Add import com.reactlibrary.RNTensorflowLitePackage; to the imports at the top of the file
  • Add new RNTensorflowLitePackage() to the list returned by the getPackages() method
  • Add the following lines to your app's build.gradle(android/app/build.gradle):
    android {
    	aaptOptions {
    	   noCompress 'tflite'
    	   noCompress 'lite'
    	}
    }
    

Usage

Place your tflite model file and labels.txt in your app's asset folder.

import {TFLiteImageRecognition} from 'react-native-tensorflow-lite';

class MyImageClassifier extends Component {

  constructor() {
    super()
    this.state = {}

    try {
	// Initialize Tensorflow Lite Image Recognizer
        this.classifier = new TFLiteImageRecognition({
        model: "mymodel.tflite",  // Your tflite model in assets folder.
        labels: "label.txt" // Your label file
      })

    } catch(err) {
      alert(err)
    }
  }

  componentWillMount() {
	this.classifyImage("apple.jpg") // Your image path.
  }
  
  async classifyImage(imagePath) {
	try {
      const results = await this.classifier.recognize({
        image: imagePath, // Your image path.
        inputShape: 224, // the input shape of your model. If none given, it will be default to 224.
      })

      const resultObj = {
	name: "Name: " + results[0].name,  
	confidence: "Confidence: " + results[0].confidence, 
	inference: "Inference: " + results[0].inference + "ms"
      };
      this.setState(resultObj)
		
    } catch(err) {
      alert(err)
    }   
  }
  
  componentWillUnmount() {
    this.classifier.close() // Must close the classifier when destroying or unmounting component to release object.
  }

  render() {
    return (
      <View style={styles.container}>
        <View>
          <Text style={styles.results}>
            {this.state.name}
          </Text>
          <Text style={styles.results}>
            {this.state.confidence}
          </Text>
          <Text style={styles.results}>
            {this.state.inference}
          </Text>
        </View>
      </View>
    );
  }
}

Things to note

  • Sometimes, when using the float model the tensorflow lite inference is slower than using the ordinary tensorflow mobile as discussed in this issue tensorflow/tensorflow#21787

About

A react native library for running Tensorflow Lite on Android.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published