A react native library for running Tensorflow Lite Image Recognition on Android app.
$ npm install react-native-tensorflow-lite --save
$ react-native link react-native-tensorflow-lite
Follow this guide: https://www.tensorflow.org/lite/convert/cmdline_examples
- Open up
android/app/src/main/java/[...]/MainActivity.java
- Add
import com.reactlibrary.RNTensorflowLitePackage;
to the imports at the top of the file - Add
new RNTensorflowLitePackage()
to the list returned by thegetPackages()
method - Add the following lines to your app's build.gradle(
android/app/build.gradle
):android { aaptOptions { noCompress 'tflite' noCompress 'lite' } }
Place your tflite model file and labels.txt in your app's asset folder.
import {TFLiteImageRecognition} from 'react-native-tensorflow-lite';
class MyImageClassifier extends Component {
constructor() {
super()
this.state = {}
try {
// Initialize Tensorflow Lite Image Recognizer
this.classifier = new TFLiteImageRecognition({
model: "mymodel.tflite", // Your tflite model in assets folder.
labels: "label.txt" // Your label file
})
} catch(err) {
alert(err)
}
}
componentWillMount() {
this.classifyImage("apple.jpg") // Your image path.
}
async classifyImage(imagePath) {
try {
const results = await this.classifier.recognize({
image: imagePath, // Your image path.
inputShape: 224, // the input shape of your model. If none given, it will be default to 224.
})
const resultObj = {
name: "Name: " + results[0].name,
confidence: "Confidence: " + results[0].confidence,
inference: "Inference: " + results[0].inference + "ms"
};
this.setState(resultObj)
} catch(err) {
alert(err)
}
}
componentWillUnmount() {
this.classifier.close() // Must close the classifier when destroying or unmounting component to release object.
}
render() {
return (
<View style={styles.container}>
<View>
<Text style={styles.results}>
{this.state.name}
</Text>
<Text style={styles.results}>
{this.state.confidence}
</Text>
<Text style={styles.results}>
{this.state.inference}
</Text>
</View>
</View>
);
}
}
- Sometimes, when using the float model the tensorflow lite inference is slower than using the ordinary tensorflow mobile as discussed in this issue tensorflow/tensorflow#21787