-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
65 changed files
with
10,933 additions
and
454 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
runs | ||
saved_models | ||
savedmodel | ||
saved_results | ||
image.png | ||
runs/* | ||
saved_models/* | ||
savedmodel/* | ||
saved_results/* | ||
big_loss/* | ||
_out |
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
submission |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,6 @@ | ||
submission | ||
> Note: Run algo-8.py as it gave the best result so far. | ||
The writeup is available here: http://teguhwijaya.com/lyft-perception-challenge-2018.html | ||
|
||
Link to saved models and training data: https://drive.google.com/open?id=1oGyFgPdqCOP92gcYdyfJeuocFRY73S-V | ||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
""" | ||
algo-8 with HSV | ||
""" | ||
import sys | ||
import os.path, errno | ||
import tensorflow as tf | ||
import helper8 as helper | ||
import warnings | ||
from distutils.version import LooseVersion | ||
import time | ||
import datetime | ||
import argparse | ||
import shutil | ||
import cv2 | ||
|
||
sys.path.append("models") | ||
from MobileUNet import build_mobile_unet | ||
|
||
# TRAINING_DIRS = ['../lyft_training_data/Train/', '../training_data_1/*/'] | ||
# TRAINING_DIRS = ['../lyft_training_data/Train_small/'] | ||
TRAINING_DIRS = ['../lyft_training_data/Train/', '../training_data_1/*/', | ||
'../training_data_2/*/'] | ||
|
||
TEST_DIR = '../lyft_training_data/Test/CameraRGB' | ||
RGB_DIR = 'CameraRGB' | ||
SEG_DIR = 'CameraSeg' | ||
|
||
SAVE_MODEL_DIR = './saved_models/' | ||
SAVE_BIG_LOSS_DIR = './big_loss/' | ||
|
||
# Check TensorFlow Version | ||
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) | ||
print('TensorFlow Version: {}'.format(tf.__version__)) | ||
|
||
# Check for a GPU | ||
if not tf.test.gpu_device_name(): | ||
warnings.warn('No GPU found. Please use a GPU to train your neural network.') | ||
else: | ||
print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) | ||
|
||
|
||
def str2bool(v): | ||
if v.lower() in ('yes', 'true', 't', 'y', '1'): | ||
return True | ||
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | ||
return False | ||
else: | ||
raise argparse.ArgumentTypeError('Boolean value expected.') | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--num_epochs', type=int, default=100, help='Number of epochs to train for') | ||
parser.add_argument('--load_model', type=str, default=None, help='Path to the model to load') | ||
parser.add_argument('--load_logits_name', type=str, default='logits_1:0', help='Loaded logits name') | ||
parser.add_argument('--load_net_input_name', type=str, default='net_input:0', help='Loaded net_input name') | ||
parser.add_argument('--load_net_output_name', type=str, default='net_output:0', help='Loaded net_output name') | ||
parser.add_argument('--load_optimizer_name', type=str, default='optimizer', help='Loaded optimizer name') | ||
parser.add_argument('--load_loss_name', type=str, default='loss:0', help='Loaded loss name') | ||
parser.add_argument('--img_height', type=int, default=256, help='Height of final input image to network') | ||
parser.add_argument('--img_width', type=int, default=256, help='Width of final input image to network') | ||
parser.add_argument('--batch_size', type=int, default=4, help='Number of images in each batch') | ||
parser.add_argument('--num_val_images', type=int, default=10, help='The number of images to used for validations') | ||
parser.add_argument('--h_flip', type=str2bool, default=True, help='Whether to randomly flip the image horizontally for data augmentation') | ||
parser.add_argument('--brightness', type=str2bool, default=True, help='Whether to randomly change the image brightness for data augmentation. Boolean.') | ||
parser.add_argument('--rotation', type=float, default=5.0, help='Whether to randomly rotate the cars for data augmentation. Specifies the max rotation angle.') | ||
parser.add_argument('--save_big_loss', type=float, default=None, help='Whether to store results with big losses. Images with loss larger than this setting will be saved.') | ||
parser.add_argument('--save_big_loss_epochs', type=int, default=50, help='Start saving images on big loss scores after this many epochs.') | ||
args = parser.parse_args() | ||
|
||
IMG_SIZE = (args.img_height, args.img_width) | ||
|
||
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, | ||
correct_label, learning_rate, saver, checkpoint_path, network, save_dir, | ||
save_big_loss=None, save_big_loss_epochs=50): | ||
""" | ||
Train neural network and print out the loss during training. | ||
:param sess: TF Session | ||
:param epochs: Number of epochs | ||
:param batch_size: Batch size | ||
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) | ||
:param train_op: TF Operation to train the neural network | ||
:param cross_entropy_loss: TF Tensor for the amount of loss | ||
:param input_image: TF Placeholder for input images | ||
:param correct_label: TF Placeholder for label images | ||
:param learning_rate: TF Placeholder for learning rate | ||
:param saver: tf.Saver object | ||
:param checkpoint_path: Path to checkpoint file | ||
:param network: TF model | ||
:param save_dir: Dir to save model | ||
""" | ||
# TODO: Implement function | ||
|
||
|
||
for epoch in range(epochs): | ||
print("epoch: ", epoch) | ||
batch = 0 | ||
for images, labels, aug_params in get_batches_fn(batch_size): | ||
# Training | ||
start = time.time() | ||
_, loss = sess.run([train_op, cross_entropy_loss], | ||
feed_dict={input_image:images, | ||
correct_label:labels}) | ||
end = time.time() | ||
print(('batch: {} loss: {} flip: {} ' + \ | ||
'gamma: {:.4f} rotation: {:.4f} ' + \ | ||
'time: {:.4f}').format( | ||
batch, loss, aug_params[0], aug_params[1], aug_params[2], end-start)) | ||
|
||
# Save bad results | ||
if save_big_loss is not None and epoch >= save_big_loss_epochs and \ | ||
loss > save_big_loss: | ||
for i, img in enumerate(images): | ||
filename = 'e{}-f{}-g{:.4f}-r{:.4f}-l{:.4f}.png'.format(epoch, | ||
aug_params[0], | ||
aug_params[1], | ||
aug_params[2], loss) | ||
path = os.path.join(SAVE_BIG_LOSS_DIR, RGB_DIR, filename) | ||
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | ||
cv2.imwrite(path, img, [cv2.IMWRITE_PNG_COMPRESSION, 9]) | ||
|
||
seg = helper.labels2seg(labels[i]) | ||
path = os.path.join(SAVE_BIG_LOSS_DIR, SEG_DIR, filename) | ||
cv2.imwrite(path, seg, [cv2.IMWRITE_PNG_COMPRESSION, 9]) | ||
batch += 1 | ||
|
||
# Save the trained model | ||
if os.path.exists(save_dir): | ||
save_dir1 = '{}-1'.format(save_dir) | ||
print("creating SavedModel at {}".format(save_dir1)) | ||
helper.save_model(sess, input_image, network, save_dir1) | ||
print("replacing SavedModel {} with {}".format(save_dir, save_dir1)) | ||
shutil.rmtree(save_dir, ignore_errors=True) | ||
os.rename(save_dir1, save_dir) | ||
shutil.rmtree(save_dir1, ignore_errors=True) | ||
else: | ||
helper.save_model(sess, input_image, network, save_dir) | ||
|
||
print("SavedModel saved at {}".format(save_dir)) | ||
|
||
saver.save(sess, checkpoint_path, write_meta_graph=True) | ||
print("Saved checkpoint to", checkpoint_path) | ||
|
||
pass | ||
|
||
def custom_loss(network, labels): | ||
# https://gist.github.com/Mistobaan/337222ac3acbfc00bdac | ||
|
||
losses = tf.nn.softmax_cross_entropy_with_logits(logits=network, labels=labels) | ||
loss = tf.reduce_mean(losses, name="loss") | ||
|
||
return loss | ||
|
||
def run(): | ||
num_classes = 3 | ||
image_shape = IMG_SIZE | ||
runs_dir = './runs' | ||
epochs = args.num_epochs | ||
batch_size = args.batch_size | ||
learning_rate=1e-5 | ||
|
||
config = tf.ConfigProto() | ||
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 | ||
|
||
with tf.Session(config=config) as sess: | ||
|
||
if args.load_model is not None: | ||
meta_graph_def = tf.saved_model.loader.load(sess, | ||
[tf.saved_model.tag_constants.SERVING], | ||
args.load_model) | ||
graph = tf.get_default_graph() | ||
net_input = graph.get_tensor_by_name(args.load_net_input_name) | ||
net_output = graph.get_tensor_by_name(args.load_net_output_name) | ||
network = graph.get_tensor_by_name(args.load_logits_name) | ||
loss = graph.get_tensor_by_name(args.load_loss_name) | ||
opt = graph.get_operation_by_name(args.load_optimizer_name) | ||
else: | ||
net_input = tf.placeholder( | ||
tf.float32,shape=[None,image_shape[0], image_shape[1], 3], | ||
name="net_input") | ||
|
||
|
||
network = build_mobile_unet(net_input, preset_model = 'MobileUNet-Skip', num_classes=num_classes) | ||
|
||
network = tf.identity(network, name='logits') | ||
|
||
net_output = tf.placeholder( | ||
tf.float32,shape=[None,image_shape[0], image_shape[1], num_classes], | ||
name="net_output") | ||
|
||
loss = custom_loss(network, net_output) | ||
opt = tf.train.AdamOptimizer(1e-4).minimize( | ||
loss, | ||
var_list=[var for var in tf.trainable_variables()], | ||
name='optimizer') | ||
|
||
# Create function to get batches | ||
get_batches_fn = helper.gen_batch_function(TRAINING_DIRS, RGB_DIR, SEG_DIR, args) | ||
|
||
init_op = tf.global_variables_initializer() | ||
|
||
# Prepares saver and loads checkpoint if any found. | ||
saver = tf.train.Saver(max_to_keep=1) | ||
today = datetime.datetime.now().strftime("%Y-%m-%d-%H%M") | ||
save_dir = os.path.join(SAVE_MODEL_DIR, today) | ||
checkpoint_path = os.path.join(SAVE_MODEL_DIR, '{}-ckpt'.format(today), 'model.ckpt') | ||
|
||
# Runs training | ||
sess.run(init_op) | ||
|
||
if args.load_model is not None: | ||
load_checkpoint_path = os.path.join('{}-ckpt'.format(args.load_model), 'model.ckpt') | ||
if os.path.exists('{}-ckpt'.format(args.load_model)): | ||
print("Loads checkpoint", load_checkpoint_path) | ||
saver.restore(sess, load_checkpoint_path) | ||
else: | ||
print("Checkpoint", load_checkpoint_path, "not found. Restart training instead.") | ||
|
||
try: | ||
os.makedirs(os.path.join(SAVE_BIG_LOSS_DIR, RGB_DIR)) | ||
os.makedirs(os.path.join(SAVE_BIG_LOSS_DIR, SEG_DIR)) | ||
except OSError as e: | ||
if e.errno != errno.EEXIST: | ||
raise | ||
|
||
train_nn(sess, epochs, batch_size, get_batches_fn, opt, loss, net_input, | ||
net_output, learning_rate, saver, checkpoint_path, network, save_dir, | ||
args.save_big_loss, args.save_big_loss_epochs) | ||
|
||
|
||
if __name__ == '__main__': | ||
run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
import sys | ||
import os.path | ||
import tensorflow as tf | ||
import helper2 as helper | ||
import warnings | ||
from distutils.version import LooseVersion | ||
import time | ||
import datetime | ||
|
||
sys.path.append("models") | ||
from FC_DenseNet_Tiramisu import build_fc_densenet | ||
|
||
TRAINING_DIR = '../lyft_training_data/Train/' | ||
TEST_DIR = '../lyft_training_data/Test/' | ||
RGB_DIR = 'CameraRGB' | ||
SEG_DIR = 'CameraSeg' | ||
|
||
SAVE_MODEL_DIR = './saved_models/' | ||
|
||
# height, width | ||
# IMG_SIZE = (300, 400) | ||
# IMG_SIZE = (224, 224) | ||
# IMG_SIZE = (256, 256) | ||
# IMG_SIZE = (128, 128) | ||
IMG_SIZE = (64, 64) | ||
|
||
|
||
# Check TensorFlow Version | ||
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) | ||
print('TensorFlow Version: {}'.format(tf.__version__)) | ||
|
||
# Check for a GPU | ||
if not tf.test.gpu_device_name(): | ||
warnings.warn('No GPU found. Please use a GPU to train your neural network.') | ||
else: | ||
print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) | ||
|
||
def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, | ||
correct_label, learning_rate): | ||
""" | ||
Train neural network and print out the loss during training. | ||
:param sess: TF Session | ||
:param epochs: Number of epochs | ||
:param batch_size: Batch size | ||
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) | ||
:param train_op: TF Operation to train the neural network | ||
:param cross_entropy_loss: TF Tensor for the amount of loss | ||
:param input_image: TF Placeholder for input images | ||
:param correct_label: TF Placeholder for label images | ||
:param learning_rate: TF Placeholder for learning rate | ||
""" | ||
# TODO: Implement function | ||
for epoch in range(epochs): | ||
print("epoch: ", epoch) | ||
batch = 0 | ||
for images, labels in get_batches_fn(batch_size): | ||
# Training | ||
start = time.time() | ||
_, loss = sess.run([train_op, cross_entropy_loss], | ||
feed_dict={input_image:images, | ||
correct_label:labels}) | ||
end = time.time() | ||
print('batch = ', batch, ', loss = ', loss, ', time = ', end-start) | ||
batch += 1 | ||
pass | ||
|
||
def custom_loss(network, labels): | ||
losses = tf.nn.softmax_cross_entropy_with_logits(logits=network, labels=labels) | ||
loss = tf.reduce_mean(losses) | ||
return loss | ||
|
||
def run(): | ||
num_classes = 3 | ||
image_shape = IMG_SIZE | ||
data_dir = TRAINING_DIR | ||
runs_dir = './runs' | ||
epochs = 1 | ||
batch_size = 1 | ||
learning_rate=1e-5 | ||
|
||
net_input = tf.placeholder( | ||
tf.float32,shape=[None,image_shape[0], image_shape[1],3], | ||
name="net_input") | ||
net_output = tf.placeholder( | ||
tf.float32,shape=[None,image_shape[0], image_shape[1],num_classes], | ||
name="net_output") | ||
|
||
network = build_fc_densenet(net_input, preset_model = 'FC-DenseNet56', num_classes=num_classes) | ||
|
||
network = tf.reshape(network, (-1, num_classes), name='logits') | ||
loss = custom_loss(network, net_output) | ||
opt = tf.train.AdamOptimizer(1e-4).minimize(loss, | ||
var_list=[var for var in tf.trainable_variables()]) | ||
|
||
with tf.Session() as sess: | ||
|
||
# Create function to get batches | ||
get_batches_fn = helper.gen_batch_function(os.path.join(data_dir), RGB_DIR, SEG_DIR, image_shape) | ||
|
||
init_op = tf.global_variables_initializer() | ||
|
||
saver = tf.train.Saver() | ||
|
||
# Runs training | ||
sess.run(init_op) | ||
train_nn(sess, epochs, batch_size, get_batches_fn, opt, loss, net_input, | ||
net_output, learning_rate) | ||
|
||
# Save the trained model | ||
today = datetime.datetime.now().strftime("%Y-%m-%d-%H%M") | ||
save_dir = os.path.join(SAVE_MODEL_DIR, today) | ||
helper.save_model(sess, net_input, network, save_dir) | ||
|
||
print("SavedModel saved at {}".format(save_dir)) | ||
|
||
test_dir = TEST_DIR | ||
helper.save_inference_samples(runs_dir, test_dir, sess, image_shape, | ||
network, net_input) | ||
|
||
# OPTIONAL: Apply the trained model to a video | ||
|
||
|
||
if __name__ == '__main__': | ||
run() |
Oops, something went wrong.