Skip to content

Commit

Permalink
fix LaTeX
Browse files Browse the repository at this point in the history
  • Loading branch information
oliviasaa committed Mar 28, 2024
1 parent fb8742f commit 0c5d91f
Showing 1 changed file with 10 additions and 33 deletions.
43 changes: 10 additions & 33 deletions tips/TIP-0040/constraints.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ The maximum Mana in the system generated by holding tokens $\text{Max Mana Holde

$$
\begin{align*}
\text{Max Mana Holders} = \frac{\text{Token Supply}*\text{Generation Rate}}{1-\text{Decay per Epoch}}2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}
\text{Max Mana Holders} = \frac{\text{Token Supply} * \text{Generation Rate}}{1-\text{Decay per Epoch}}2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}
\end{align*}
$$

Expand All @@ -45,57 +45,34 @@ $$
\end{align*}
$$

<!---
the function above is increasing if $m\leq \frac{-1}{\log(\text{Decay per Epoch})}$ and decreasing otherwise (i.e., it is a concave function). However, since the `Bootstrapping Duration` is set such that $\text{Bootstrapping Duration in Years}*\text{Decay per Year}=1$, we have that $\text{Bootstrapping Duration in Years} = \frac{1}{\text{Decay per Year}}<\frac{-1}{\log(\text{Decay per Year})}$, whenever $\text{Decay per year}>0.57$. Then, the maximum amount of Mana distributed as rewards in the bootstrapping Phase is achieved at `Bootstrapping Duration`, i.e., the maximum is
$$
\begin{align*}
\frac{\text{Epochs per year}}{\text{Decay per Year}} \text{Max to Target Ratio}*\text{Final Target Rewards Rate}
\end{align*}
$$
-->

the function above is increasing if $n\leq \frac{-1}{\log(\text{Decay per Epoch})}$ and decreasing otherwise (i.e., it is a concave function). However, since the $\text{Bootstrapping Duration}$ is set such that $\text{Bootstrapping Duration in Years}*\text{Beta per Year}=1$, we have that $\text{Bootstrapping Duration in Years} = \frac{1}{\text{Beta per Year}}=\frac{-1}{\log(\text{Decay per Year})}$. Then, the maximum amount of Mana distributed as rewards in the bootstrapping Phase is achieved at $\text{Bootstrapping Duration}$, i.e., the maximum is

$$
\begin{align*}
&\text{Max Mana Supply Bootstrapping}\\
&=\frac{1}{-\log(\text{Decay per Epoch})}* \text{Max to Target Ratio}*\text{Final Target Rewards Rate}
&=\frac{1}{-\log(\text{Decay per Epoch})} * \text{Max to Target Ratio} * \text{Final Target Rewards Rate}
\end{align*}
$$

By definition, we have that $\text{Final Target Rewards Rate}$ is

$$
\begin{align*}
&\text{Final Target Rewards Rate}=\text{Token Supply}*\text{Reward To Generation Ratio}\\
*&\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}
&\text{Final Target Rewards Rate}=\text{Token Supply} * \text{Reward To Generation Ratio}\\
* &\text{Generation Rate} * 2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}
\end{align*}
$$

Then, the Maximum Mana supply in the bootstrapping phase is

<!---
$$
\begin{align*}
&\text{Token Supply}*\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&*\left(\text{Reward To Generation Ratio}\right.\\
&*\frac{\text{Epochs per year}}{\text{Decay per Year}} \text{Max to Target Ratio}\\
+&\left.\frac{1}{1-\text{Decay per Epoch}}\right)\\
&\leq \text{Token Supply}*\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\frac{1+\text{Reward To Generation Ratio}*\text{Max to Target Ratio}}{1-\text{Decay per Epoch}}
\end{align*}
$$
-->

$$
\begin{align*}
&\text{Max Mana Supply Bootstrapping}\\
&=\text{Token Supply}*\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\left(\text{Reward To Generation Ratio}*\frac{1}{-\log(\text{Decay per Epoch})}* \text{Max to Target Ratio}\right.\\
&=\text{Token Supply}*\text{Generation Rate} * 2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\left(\text{Reward To Generation Ratio} * \frac{1}{-\log(\text{Decay per Epoch})} * \text{Max to Target Ratio}\right.\\
+&\left.\frac{1}{1-\text{Decay per Epoch}}\right)\\
&\leq \text{Token Supply}*\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\frac{1+\text{Reward To Generation Ratio}*\text{Max to Target Ratio}}{1-\text{Decay per Epoch}}
&\leq \text{Token Supply} * \text{Generation Rate} * 2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\frac{1+\text{Reward To Generation Ratio} * \text{Max to Target Ratio}}{1-\text{Decay per Epoch}}
\end{align*}
$$

Expand All @@ -108,8 +85,8 @@ Then, we have that the total Mana in the system will never be larger than $\text
$$
\begin{align*}
&\text{Max Mana Supply}\\
&=\text{Token Supply}*\text{Generation Rate}*2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\frac{1+\text{Reward To Generation Ratio}*\text{Max to Target Ratio}}{1-\text{Decay per Epoch}}
&=\text{Token Supply} * \text{Generation Rate} * 2^{\text{Slots per Epoch Exp}-\text{Generation Rate Exp}}\\
&\frac{1+\text{Reward To Generation Ratio} * \text{Max to Target Ratio}}{1-\text{Decay per Epoch}}
\end{align*}
$$

Expand Down

0 comments on commit 0c5d91f

Please sign in to comment.