-
Notifications
You must be signed in to change notification settings - Fork 823
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add more unit tests for image processors
- Loading branch information
Showing
1 changed file
with
202 additions
and
26 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,64 +1,240 @@ | ||
|
||
import { env, AutoProcessor, RawImage } from '../src/transformers.js'; | ||
import { m } from './init.js'; | ||
import { m, MAX_TEST_EXECUTION_TIME } from './init.js'; | ||
import { compare } from './test_utils.js'; | ||
|
||
// Initialise the testing environment | ||
env.allowLocalModels = false; | ||
env.useFSCache = false; | ||
|
||
const sum = (array) => { | ||
let sum = 0; | ||
for (let i = 0; i < array.length; ++i) { | ||
sum += array[i]; | ||
} | ||
return sum; | ||
const avg = (array) => { | ||
return Number(array.reduce((a, b) => a + b, array instanceof BigInt64Array ? 0n : 0)) / array.length; | ||
} | ||
|
||
describe('Processors', () => { | ||
|
||
describe('Image processors', () => { | ||
|
||
const models = [ | ||
'caidas/swin2SR-classical-sr-x2-64', | ||
'facebook/sam-vit-base', | ||
]; | ||
const IMAGE_CACHE = new Map(); | ||
const load_image = async (url) => { | ||
const cached = IMAGE_CACHE.get(url); | ||
if (cached) { | ||
return cached; | ||
} | ||
const image = await RawImage.fromURL(url); | ||
IMAGE_CACHE.set(url, image); | ||
return image; | ||
} | ||
|
||
const MODELS = { | ||
swin2sr: 'caidas/swin2SR-classical-sr-x2-64', | ||
sam: 'facebook/sam-vit-base', | ||
'donut-swin': 'naver-clova-ix/donut-base-finetuned-cord-v2', | ||
resnet: 'microsoft/resnet-50', | ||
vit: 'google/vit-base-patch16-224', | ||
mobilevit: 'apple/mobilevit-small', | ||
mobilevit_2: 'Xenova/quickdraw-mobilevit-small', | ||
deit: 'facebook/deit-tiny-distilled-patch16-224', | ||
beit: 'microsoft/beit-base-patch16-224-pt22k-ft22k', | ||
detr: 'facebook/detr-resnet-50', | ||
yolos: 'hustvl/yolos-small-300', | ||
} | ||
|
||
const TEST_IMAGES = { | ||
pattern_3x3: 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/pattern_3x3.png', | ||
checkerboard_8x8: 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/checkerboard_8x8.png', | ||
receipt: 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/receipt.png', | ||
tiger: 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg', | ||
|
||
// grayscale image | ||
skateboard: 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/ml-web-games/skateboard.png', | ||
} | ||
|
||
// do_pad=true, pad_size=8 | ||
it(models[0], async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(models[0])) | ||
// Swin2SRImageProcessor | ||
// - tests when padding is a number (do_pad=true, pad_size=8) | ||
it(MODELS.swin2sr, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.swin2sr)) | ||
|
||
{ // Pad to multiple of 8 (3x3 -> 8x8) | ||
const image = await RawImage.fromURL(TEST_IMAGES.pattern_3x3); | ||
const image = await load_image(TEST_IMAGES.pattern_3x3); | ||
const { pixel_values } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 8, 8]); | ||
compare(sum(pixel_values.data), 104.80000066757202); | ||
compare(avg(pixel_values.data), 0.5458333368102709); | ||
} | ||
|
||
{ // Do not pad if already a multiple of 8 (8x8 -> 8x8) | ||
const image = await RawImage.fromURL(TEST_IMAGES.checkerboard_8x8); | ||
const image = await load_image(TEST_IMAGES.checkerboard_8x8); | ||
const { pixel_values } = await processor(image); | ||
compare(pixel_values.dims, [1, 3, 8, 8]); | ||
compare(sum(pixel_values.data), 96); | ||
compare(avg(pixel_values.data), 0.5); | ||
} | ||
}); | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// do_pad=true, "pad_size": {"height": 1024,"width": 1024 }, | ||
it(models[1], async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(models[1])) | ||
// SamProcessor/SamImageProcessor | ||
// - tests normal padding (do_pad=true, pad_size={"height":1024,"width":1024}) | ||
// - In addition to the image, pass in a list of points | ||
it(MODELS.sam, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.sam)) | ||
|
||
{ // Basic test | ||
const image = await RawImage.fromURL(TEST_IMAGES.pattern_3x3); | ||
const image = await load_image(TEST_IMAGES.pattern_3x3); | ||
const { pixel_values } = await processor(image, [[[0, 0]]]); | ||
compare(pixel_values.dims, [1, 3, 1024, 1024]); | ||
compare(sum(pixel_values.data), -1417375.5943619595); | ||
compare(avg(pixel_values.data), -0.4505715670146813); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// DonutProcessor/DonutFeatureExtractor | ||
// - tests thumbnail resizing (do_thumbnail=true, size=[960, 1280]) | ||
it(MODELS['donut-swin'], async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS['donut-swin'])) | ||
|
||
{ | ||
const image = await load_image(TEST_IMAGES.receipt); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 1280, 960]); | ||
compare(avg(pixel_values.data), 0.1229388610053704); | ||
|
||
compare(original_sizes, [[864, 576]]); | ||
compare(reshaped_input_sizes, [[1280, 853]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// ConvNextFeatureExtractor | ||
it(MODELS.resnet, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.resnet)) | ||
|
||
{ | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 224, 336]); | ||
compare(avg(pixel_values.data), -0.27736667280600913); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[224, 336]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// ViTFeatureExtractor | ||
it(MODELS.vit, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.vit)) | ||
|
||
{ | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 224, 224]); | ||
compare(avg(pixel_values.data), -0.22706867939852762); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[224, 224]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// MobileViTFeatureExtractor | ||
it(MODELS.mobilevit, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.mobilevit)) | ||
|
||
{ | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 256, 256]); | ||
compare(avg(pixel_values.data), 0.4599160496887033); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[256, 256]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// MobileViTFeatureExtractor | ||
// - tests not converting to rgb (do_convert_rgb=false) | ||
it(MODELS.mobilevit_2, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.mobilevit_2)) | ||
|
||
{ // Tests grayscale image | ||
const image = await load_image(TEST_IMAGES.skateboard); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 1, 28, 28]); | ||
compare(avg(pixel_values.data), 0.08558923671585128); | ||
|
||
compare(original_sizes, [[28, 28]]); | ||
compare(reshaped_input_sizes, [[28, 28]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// DeiTFeatureExtractor | ||
it(MODELS.deit, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.deit)) | ||
|
||
{ // Tests grayscale image | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 224, 224]); | ||
compare(avg(pixel_values.data), -0.2760336682859463); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[224, 224]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
// BeitFeatureExtractor | ||
it(MODELS.beit, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.beit)) | ||
|
||
{ // Tests grayscale image | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 224, 224]); | ||
compare(avg(pixel_values.data), -0.22706867939852762); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[224, 224]]); | ||
} | ||
}); | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
}) | ||
|
||
// DetrFeatureExtractor | ||
it(MODELS.detr, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.detr)) | ||
|
||
{ // Tests grayscale image | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes, pixel_mask } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 888, 1333]); | ||
compare(avg(pixel_values.data), -0.27840224131001773); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[888, 1333]]); | ||
|
||
compare(pixel_mask.dims, [1, 64, 64]); | ||
compare(avg(pixel_mask.data), 1); | ||
|
||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
|
||
|
||
// YolosFeatureExtractor | ||
it(MODELS.yolos, async () => { | ||
const processor = await AutoProcessor.from_pretrained(m(MODELS.yolos)) | ||
|
||
{ // Tests grayscale image | ||
const image = await load_image(TEST_IMAGES.tiger); | ||
const { pixel_values, original_sizes, reshaped_input_sizes } = await processor(image); | ||
|
||
compare(pixel_values.dims, [1, 3, 888, 1333]); | ||
compare(avg(pixel_values.data), -0.27840224131001773); | ||
|
||
compare(original_sizes, [[408, 612]]); | ||
compare(reshaped_input_sizes, [[888, 1333]]); | ||
} | ||
}, MAX_TEST_EXECUTION_TIME); | ||
}); | ||
}); |