Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More mnist training. #275

Merged
merged 1 commit into from
Jul 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 129 additions & 10 deletions candle-examples/examples/simple-training/main.rs
Original file line number Diff line number Diff line change
@@ -1,16 +1,130 @@
// This should rearch 91.5% accuracy.
// This should reach 91.5% accuracy.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

use anyhow::Result;
use candle::{DType, Var, D};
use candle_nn::{loss, ops};
use candle::{DType, Device, Result, Shape, Tensor, Var, D};
use candle_nn::{loss, ops, Linear};
use std::sync::{Arc, Mutex};

const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;

pub fn main() -> Result<()> {
struct TensorData {
tensors: std::collections::HashMap<String, Var>,
pub dtype: DType,
pub device: Device,
}

// A variant of candle_nn::VarBuilder for initializing variables before training.
#[derive(Clone)]
struct VarStore {
data: Arc<Mutex<TensorData>>,
path: Vec<String>,
}

impl VarStore {
fn new(dtype: DType, device: Device) -> Self {
let data = TensorData {
tensors: std::collections::HashMap::new(),
dtype,
device,
};
Self {
data: Arc::new(Mutex::new(data)),
path: vec![],
}
}

fn pp(&self, s: &str) -> Self {
let mut path = self.path.clone();
path.push(s.to_string());
Self {
data: self.data.clone(),
path,
}
}

fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str) -> Result<Tensor> {
let shape = shape.into();
let path = if self.path.is_empty() {
tensor_name.to_string()
} else {
[&self.path.join("."), tensor_name].join(".")
};
let mut tensor_data = self.data.lock().unwrap();
if let Some(tensor) = tensor_data.tensors.get(&path) {
let tensor_shape = tensor.shape();
if &shape != tensor_shape {
candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}")
}
return Ok(tensor.as_tensor().clone());
}
// TODO: Proper initialization using the `Init` enum.
let var = Var::zeros(shape, tensor_data.dtype, &tensor_data.device)?;
let tensor = var.as_tensor().clone();
tensor_data.tensors.insert(path, var);
Ok(tensor)
}

fn all_vars(&self) -> Vec<Var> {
let tensor_data = self.data.lock().unwrap();
#[allow(clippy::map_clone)]
tensor_data
.tensors
.values()
.map(|c| c.clone())
.collect::<Vec<_>>()
}
}

fn linear(dim1: usize, dim2: usize, vs: VarStore) -> Result<Linear> {
let ws = vs.get((dim2, dim1), "weight")?;
let bs = vs.get(dim2, "bias")?;
Ok(Linear::new(ws, Some(bs)))
}

#[allow(unused)]
struct LinearModel {
linear: Linear,
}

#[allow(unused)]
impl LinearModel {
fn new(vs: VarStore) -> Result<Self> {
let linear = linear(IMAGE_DIM, LABELS, vs)?;
Ok(Self { linear })
}

fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.linear.forward(xs)
}
}

#[allow(unused)]
struct Mlp {
ln1: Linear,
ln2: Linear,
}

#[allow(unused)]
impl Mlp {
fn new(vs: VarStore) -> Result<Self> {
let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
let ln2 = linear(100, LABELS, vs.pp("ln2"))?;
Ok(Self { ln1, ln2 })
}

fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.ln1.forward(xs)?;
let xs = xs.relu()?;
self.ln2.forward(&xs)
}
}

pub fn main() -> anyhow::Result<()> {
let dev = candle::Device::cuda_if_available(0)?;

// Load the dataset
let m = candle_nn::vision::mnist::load_dir("data")?;
println!("train-images: {:?}", m.train_images.shape());
println!("train-labels: {:?}", m.train_labels.shape());
Expand All @@ -19,18 +133,23 @@ pub fn main() -> Result<()> {
let train_labels = m.train_labels;
let train_images = m.train_images;
let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);

let vs = VarStore::new(DType::F32, dev);
let model = LinearModel::new(vs.clone())?;
// let model = Mlp::new(vs)?;

let all_vars = vs.all_vars();
let all_vars = all_vars.iter().collect::<Vec<_>>();
let sgd = candle_nn::SGD::new(&all_vars, 1.0);
let test_images = m.test_images;
let test_labels = m.test_labels.to_dtype(DType::U32)?;
for epoch in 1..200 {
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
let logits = model.forward(&train_images)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;

let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
let test_logits = model.forward(&test_images)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
Expand Down
1 change: 1 addition & 0 deletions candle-nn/src/var_builder.rs
Original file line number Diff line number Diff line change
Expand Up @@ -209,6 +209,7 @@ impl<'a> VarBuilder<'a> {
};
Ok(tensor)
}

pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> Result<Tensor> {
let data = self.data.as_ref();
let s: Shape = s.into();
Expand Down
Loading