Skip to content

Commit

Permalink
code format
Browse files Browse the repository at this point in the history
  • Loading branch information
StoneT2000 committed Jan 21, 2024
1 parent 69450a9 commit 67b17ab
Show file tree
Hide file tree
Showing 6 changed files with 55 additions and 30 deletions.
4 changes: 1 addition & 3 deletions mani_skill2/envs/pick_and_place/pick_cube.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,7 @@ def _initialize_actors(self):
qs.append(q)
qs = to_tensor(qs)
# to set a batch of poses, use the Pose object or provide a raw tensor
obj_pose = Pose.create_from_pq(
p=xyz, q=qs
)
obj_pose = Pose.create_from_pq(p=xyz, q=qs)

self.obj.set_pose(obj_pose)

Expand Down
10 changes: 6 additions & 4 deletions mani_skill2/envs/pick_and_place/pick_single.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,9 @@ def _check_assets(self):
pass

def _load_actors(self):
self.table_scene = TableSceneBuilder(env=self, robot_init_qpos_noise=self.robot_init_qpos_noise)
self.table_scene = TableSceneBuilder(
env=self, robot_init_qpos_noise=self.robot_init_qpos_noise
)
self.table_scene.build()
self._load_model()
self.obj.set_linear_damping(0.1)
Expand Down Expand Up @@ -246,7 +248,7 @@ def evaluate(self, obs):
obj_to_goal_pos=obj_to_goal_pos,
is_obj_placed=is_obj_placed,
is_robot_static=is_robot_static,
success=torch.logical_and(is_obj_placed, is_robot_static)
success=torch.logical_and(is_obj_placed, is_robot_static),
)

def compute_dense_reward(self, obs, action, info):
Expand All @@ -255,7 +257,6 @@ def compute_dense_reward(self, obs, action, info):
# since the original reward can be unfriendly for RL,
# even though MPC can solve many objects through the original reward.


obj_pose = self.obj_pose

# reaching reward
Expand All @@ -264,7 +265,8 @@ def compute_dense_reward(self, obs, action, info):
reaching_reward = 1 - torch.tanh(
3.0
* torch.maximum(
tcp_to_obj_dist - torch.linalg.norm(self.model_bbox_size), torch.tensor(0.0)
tcp_to_obj_dist - torch.linalg.norm(self.model_bbox_size),
torch.tensor(0.0),
)
)
reward = reaching_reward
Expand Down
2 changes: 1 addition & 1 deletion mani_skill2/envs/tasks/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
from .fmb.fmb import FMBEnv
from .push_cube import PushCubeEnv
from .push_object import PushObjectEnv
from .push_object import PushObjectEnv
23 changes: 15 additions & 8 deletions mani_skill2/envs/tasks/push_cube.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,9 @@ def _initialize_actors(self):

# here we write some randomization code that randomizes the x, y position of the cube we are pushing in the range [-0.1, -0.1] to [0.1, 0.1]
xyz = torch.zeros((self.num_envs, 3), device=self.device)
xyz[..., :2] = torch.from_numpy(self._episode_rng.uniform(-0.1, 0.1, [self.num_envs, 2])).cuda()
xyz[..., :2] = torch.from_numpy(
self._episode_rng.uniform(-0.1, 0.1, [self.num_envs, 2])
).cuda()
xyz[..., 2] = self.cube_half_size
q = [1, 0, 0, 0]
# we can then create a pose object using Pose.create_from_pq to then set the cube pose with. Note that even though our quaternion
Expand All @@ -106,8 +108,12 @@ def _initialize_actors(self):

# here we set the location of that red/white target (the goal region). In particular here, we set the position to be in front of the cube
# and we further rotate 90 degrees on the y-axis to make the target object face up
target_region_xyz = xyz + torch.tensor([0.1 + self.goal_radius, 0, 0], device=self.device)
target_region_xyz[..., 2] = 1e-3 # set a little bit above 0 so the target is sitting on the table
target_region_xyz = xyz + torch.tensor(
[0.1 + self.goal_radius, 0, 0], device=self.device
)
target_region_xyz[
..., 2
] = 1e-3 # set a little bit above 0 so the target is sitting on the table
self.goal_region.set_pose(
Pose.create_from_pq(
p=target_region_xyz,
Expand All @@ -116,7 +122,7 @@ def _initialize_actors(self):
)

def _get_obs_extra(self):
# some useful observation info for solving the task includes the pose of the tcp (tool center point) which is the point between the
# some useful observation info for solving the task includes the pose of the tcp (tool center point) which is the point between the
# grippers of the robot
obs = OrderedDict(
tcp_pose=vectorize_pose(self.agent.tcp.pose),
Expand All @@ -131,29 +137,30 @@ def _get_obs_extra(self):
return obs

def evaluate(self, obs: Any):
# success is achieved when the cube's xy position on the table is within the
# success is achieved when the cube's xy position on the table is within the
# goal region's area (a circle centered at the goal region's xy position)
is_obj_placed = (
torch.linalg.norm(
self.obj.pose.p[..., :2] - self.goal_region.pose.p[..., :2], axis=1
)
< self.goal_radius
)

return {
"success": is_obj_placed,
}

def compute_dense_reward(self, obs: Any, action: Array, info: Dict):
# We also create a pose marking where the robot should push the cube from that is easiest (pushing from behind the cube)
tcp_push_pose = Pose.create_from_pq(
p=self.obj.pose.p + torch.tensor([-self.cube_half_size - 0.005, 0, 0], device=self.device)
p=self.obj.pose.p
+ torch.tensor([-self.cube_half_size - 0.005, 0, 0], device=self.device)
)
tcp_to_push_pose = tcp_push_pose.p - self.agent.tcp.pose.p
tcp_to_push_pose_dist = torch.linalg.norm(tcp_to_push_pose, axis=1)
reaching_reward = 1 - torch.tanh(5 * tcp_to_push_pose_dist)
reward = reaching_reward

# compute a placement reward to encourage robot to move the cube to the center of the goal region
# we further multiply the place_reward by a mask reached so we only add the place reward if the robot has reached the desired push pose
# This reward design helps train RL agents faster by staging the reward out.
Expand Down
42 changes: 30 additions & 12 deletions mani_skill2/envs/tasks/push_object.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,13 @@
from mani_skill2.agents.robots.xmate3.xmate3 import Xmate3Robotiq
from mani_skill2.envs.sapien_env import BaseEnv
from mani_skill2.sensors.camera import CameraConfig
from mani_skill2.utils.building.actors import build_actor_ycb, build_cube, build_red_white_target, model_dbs, _load_ycb_dataset
from mani_skill2.utils.building.actors import (
_load_ycb_dataset,
build_actor_ycb,
build_cube,
build_red_white_target,
model_dbs,
)
from mani_skill2.utils.registration import register_env
from mani_skill2.utils.sapien_utils import ( # import various useful utilities for working with sapien
look_at,
Expand Down Expand Up @@ -53,9 +59,14 @@ def _load_actors(self):
)
self.table_scene.build()


self.obj, height = build_actor_ycb(self.model_id, self._scene, name=self.model_id, body_type="dynamic", add_collision=True)
self.obj_z = height/2
self.obj, height = build_actor_ycb(
self.model_id,
self._scene,
name=self.model_id,
body_type="dynamic",
add_collision=True,
)
self.obj_z = height / 2

self.goal_region = build_red_white_target(
self._scene,
Expand Down Expand Up @@ -83,7 +94,9 @@ def _initialize_actors(self):

# here we write some randomization code that randomizes the x, y position of the cube we are pushing in the range [-0.1, -0.1] to [0.1, 0.1]
xyz = torch.zeros((self.num_envs, 3), device=self.device)
xyz[..., :2] = torch.from_numpy(self._episode_rng.uniform(-0.1, 0.1, [self.num_envs, 2])).cuda()
xyz[..., :2] = torch.from_numpy(
self._episode_rng.uniform(-0.1, 0.1, [self.num_envs, 2])
).cuda()
xyz[..., 2] = self.obj_z
q = [1, 0, 0, 0]
# we can then create a pose object using Pose.create_from_pq to then set the cube pose with. Note that even though our quaternion
Expand All @@ -94,8 +107,12 @@ def _initialize_actors(self):
# here we set the location of that red/white target (the goal region). In particular here, we set the position to be in front of the cube
# and we further rotate 90 degrees on the y-axis to make the target object face up
xyz = torch.zeros((self.num_envs, 3), device=self.device)
target_region_xyz = xyz + torch.tensor([0.1 + self.goal_radius, 0, 0], device=self.device)
target_region_xyz[..., 2] = 1e-3 # set a little bit above 0 so the target is sitting on the table
target_region_xyz = xyz + torch.tensor(
[0.1 + self.goal_radius, 0, 0], device=self.device
)
target_region_xyz[
..., 2
] = 1e-3 # set a little bit above 0 so the target is sitting on the table
self.goal_region.set_pose(
Pose.create_from_pq(
p=target_region_xyz,
Expand All @@ -104,7 +121,7 @@ def _initialize_actors(self):
)

def _get_obs_extra(self):
# some useful observation info for solving the task includes the pose of the tcp (tool center point) which is the point between the
# some useful observation info for solving the task includes the pose of the tcp (tool center point) which is the point between the
# grippers of the robot
obs = OrderedDict(
tcp_pose=vectorize_pose(self.agent.tcp.pose),
Expand All @@ -119,15 +136,15 @@ def _get_obs_extra(self):
return obs

def evaluate(self, obs: Any):
# success is achieved when the cube's xy position on the table is within the
# success is achieved when the cube's xy position on the table is within the
# goal region's area (a circle centered at the goal region's xy position)
# is_obj_placed = (
# torch.linalg.norm(
# self.obj.pose.p[..., :2] - self.goal_region.pose.p[..., :2], axis=1
# )
# < self.goal_radius
# )

return {
"success": torch.zeros(self.num_envs, device=self.device),
}
Expand All @@ -136,13 +153,14 @@ def compute_dense_reward(self, obs: Any, action: Array, info: Dict):
return torch.zeros(self.num_envs, device=self.device)
# We also create a pose marking where the robot should push the cube from that is easiest (pushing from behind the cube)
tcp_push_pose = Pose.create_from_pq(
p=self.obj.pose.p + torch.tensor([-self.cube_half_size - 0.005, 0, 0], device=self.device)
p=self.obj.pose.p
+ torch.tensor([-self.cube_half_size - 0.005, 0, 0], device=self.device)
)
tcp_to_push_pose = tcp_push_pose.p - self.agent.tcp.pose.p
tcp_to_push_pose_dist = torch.linalg.norm(tcp_to_push_pose, axis=1)
reaching_reward = 1 - torch.tanh(5 * tcp_to_push_pose_dist)
reward = reaching_reward

# compute a placement reward to encourage robot to move the cube to the center of the goal region
# we further multiply the place_reward by a mask reached so we only add the place reward if the robot has reached the desired push pose
# This reward design helps train RL agents faster by staging the reward out.
Expand Down
4 changes: 2 additions & 2 deletions mani_skill2/utils/building/actors.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ def build_actor_ycb(
name: str,
root_dir=ASSET_DIR / "mani_skill2_ycb",
body_type: str = "dynamic",
add_collision: bool = True
add_collision: bool = True,
):
if "YCB" not in model_dbs:
_load_ycb_dataset()
Expand All @@ -288,7 +288,7 @@ def build_actor_ycb(
material=physical_material,
density=density,
decomposition="coacd",
)
)

visual_file = str(model_dir / "textured.obj")
builder.add_visual_from_file(filename=visual_file, scale=[scale] * 3)
Expand Down

0 comments on commit 67b17ab

Please sign in to comment.