Skip to content

Commit

Permalink
Merge branch 'dev' into rl
Browse files Browse the repository at this point in the history
  • Loading branch information
StoneT2000 committed Jan 23, 2024
2 parents 1473fbb + 18b176c commit 140a8c9
Show file tree
Hide file tree
Showing 11 changed files with 306 additions and 83 deletions.
7 changes: 2 additions & 5 deletions mani_skill2/agents/controllers/base_controller.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,11 +206,8 @@ def _initialize_joints(self):

def _assert_fully_actuated(self):
active_joints = self.articulation.get_active_joints()
if len(active_joints) != len(self.joints) or not np.all(
[
active_joint == joint
for active_joint, joint in zip(active_joints, self.joints)
]
if len(active_joints) != len(self.joints) or set(active_joints) != set(
self.joints
):
print("active_joints:", [x.name for x in active_joints])
print("controlled_joints:", [x.name for x in self.joints])
Expand Down
12 changes: 10 additions & 2 deletions mani_skill2/agents/controllers/pd_base_vel.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
import torch

from mani_skill2.utils.geometry import rotate_2d_vec_by_angle

Expand All @@ -18,14 +19,21 @@ def _initialize_action_space(self):
def set_action(self, action: np.ndarray):
action = self._preprocess_action(action)

# TODO (arth): add support for batched qpos and gpu sim
if isinstance(self.qpos, torch.Tensor):
qpos = self.qpos.detach().cpu().numpy()
qpos = qpos[0]
if isinstance(action, torch.Tensor):
action = action.detach().cpu().numpy()

# Convert to ego-centric action
# Assume the 3rd DoF stands for orientation
ori = self.qpos[2]
ori = qpos[2]
vel = rotate_2d_vec_by_angle(action[:2], ori)
new_action = np.hstack([vel, action[2:]])

for i, joint in enumerate(self.joints):
joint.set_drive_velocity_target(new_action[i])
joint.set_drive_velocity_target(np.array([new_action[i]]))


class PDBaseVelControllerConfig(PDJointVelControllerConfig):
Expand Down
10 changes: 6 additions & 4 deletions mani_skill2/agents/controllers/pd_ee_pose.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from scipy.spatial.transform import Rotation

from mani_skill2.utils.common import clip_and_scale_action
from mani_skill2.utils.sapien_utils import get_obj_by_name
from mani_skill2.utils.sapien_utils import get_obj_by_name, to_numpy, to_tensor
from mani_skill2.utils.structs.pose import vectorize_pose

from .base_controller import BaseController, ControllerConfig
Expand Down Expand Up @@ -64,15 +64,17 @@ def reset(self):

def compute_ik(self, target_pose, max_iterations=100):
# Assume the target pose is defined in the base frame
# TODO (arth): currently ik only supports cpu, so input/output is managed as such
# in future, need to change input/output processing per gpu implementation
result, success, error = self.pmodel.compute_inverse_kinematics(
self.ee_link_idx,
target_pose,
initial_qpos=self.articulation.get_qpos(),
target_pose.sp,
initial_qpos=to_numpy(self.articulation.get_qpos()).squeeze(0),
active_qmask=self.qmask,
max_iterations=max_iterations,
)
if success:
return result[self.joint_indices]
return to_tensor([result[self.joint_indices]])
else:
return None

Expand Down
2 changes: 1 addition & 1 deletion mani_skill2/agents/robots/fetch/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
from .fetch import Fetch
from .fetch import FETCH_UNIQUE_COLLISION_BIT, Fetch
204 changes: 155 additions & 49 deletions mani_skill2/agents/robots/fetch/fetch.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,31 @@
from copy import deepcopy
from typing import Dict, Tuple

import numpy as np
import sapien
import sapien.physx as physx
import torch

from mani_skill2 import PACKAGE_ASSET_DIR
from mani_skill2.agents.base_agent import BaseAgent
from mani_skill2.agents.controllers import *
from mani_skill2.sensors.camera import CameraConfig
from mani_skill2.utils.common import np_compute_angle_between
from mani_skill2.utils.common import compute_angle_between, np_compute_angle_between
from mani_skill2.utils.sapien_utils import (
compute_total_impulse,
get_actor_contacts,
get_obj_by_name,
get_pairwise_contact_impulse,
to_tensor,
)
from mani_skill2.utils.structs.actor import Actor
from mani_skill2.utils.structs.base import BaseStruct
from mani_skill2.utils.structs.joint import Joint
from mani_skill2.utils.structs.link import Link
from mani_skill2.utils.structs.pose import Pose
from mani_skill2.utils.structs.types import Array

FETCH_UNIQUE_COLLISION_BIT = 1 << 30


class Fetch(BaseAgent):
Expand All @@ -33,6 +44,19 @@ class Fetch(BaseAgent):
),
),
)
sensor_configs = [
CameraConfig(
uid="fetch_head",
p=[0, 0, 0],
q=[1, 0, 0, 0],
width=128,
height=128,
fov=1.57,
near=0.01,
far=10,
entity_uid="head_camera_link",
)
]

def __init__(self, *args, **kwargs):
self.arm_joint_names = [
Expand Down Expand Up @@ -67,6 +91,12 @@ def __init__(self, *args, **kwargs):
self.body_damping = 1e2
self.body_force_limit = 100

self.base_joint_names = [
"root_x_axis_joint",
"root_y_axis_joint",
"root_z_rotation_joint",
]

super().__init__(*args, **kwargs)

@property
Expand Down Expand Up @@ -181,110 +211,200 @@ def controller_configs(self):
normalize_action=False,
)

# -------------------------------------------------------------------------- #
# Base
# -------------------------------------------------------------------------- #
base_pd_joint_vel = PDBaseVelControllerConfig(
self.base_joint_names,
lower=[-0.5, -0.5, -3.14],
upper=[0.5, 0.5, 3.14],
damping=1000,
force_limit=500,
)

controller_configs = dict(
pd_joint_delta_pos=dict(
arm=arm_pd_joint_delta_pos,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_joint_pos=dict(
arm=arm_pd_joint_pos,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_ee_delta_pos=dict(
arm=arm_pd_ee_delta_pos,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_ee_delta_pose=dict(
arm=arm_pd_ee_delta_pose,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_ee_delta_pose_align=dict(
arm=arm_pd_ee_delta_pose_align,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
# TODO(jigu): how to add boundaries for the following controllers
pd_joint_target_delta_pos=dict(
arm=arm_pd_joint_target_delta_pos,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_ee_target_delta_pos=dict(
arm=arm_pd_ee_target_delta_pos,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_ee_target_delta_pose=dict(
arm=arm_pd_ee_target_delta_pose,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
# Caution to use the following controllers
pd_joint_vel=dict(
arm=arm_pd_joint_vel,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_joint_pos_vel=dict(
arm=arm_pd_joint_pos_vel,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
pd_joint_delta_pos_vel=dict(
arm=arm_pd_joint_delta_pos_vel,
gripper=gripper_pd_joint_pos,
body=body_pd_joint_pos,
base=base_pd_joint_vel,
),
)

# Make a deepcopy in case users modify any config
return deepcopy_dict(controller_configs)

def _after_init(self):
self.finger1_link = get_obj_by_name(
self.finger1_link: Link = get_obj_by_name(
self.robot.get_links(), "l_gripper_finger_link"
)
self.finger2_link = get_obj_by_name(
self.finger2_link: Link = get_obj_by_name(
self.robot.get_links(), "r_gripper_finger_link"
)
self.tcp = get_obj_by_name(self.robot.get_links(), self.ee_link_name)

def is_grasping(self, object: sapien.Entity = None, min_impulse=1e-6, max_angle=85):
contacts = self.scene.get_contacts()
if object is None:
finger1_contacts = get_actor_contacts(contacts, self.finger1_link)
finger2_contacts = get_actor_contacts(contacts, self.finger2_link)
return (
np.linalg.norm(compute_total_impulse(finger1_contacts)) >= min_impulse
and np.linalg.norm(compute_total_impulse(finger2_contacts))
>= min_impulse
)
else:
limpulse = get_pairwise_contact_impulse(contacts, self.finger1_link, object)
rimpulse = get_pairwise_contact_impulse(contacts, self.finger2_link, object)
self.tcp: Link = get_obj_by_name(self.robot.get_links(), self.ee_link_name)

# direction to open the gripper
ldirection = -self.finger1_link.pose.to_transformation_matrix()[:3, 1]
rdirection = self.finger2_link.pose.to_transformation_matrix()[:3, 1]
self.base_link: Link = get_obj_by_name(self.robot.get_links(), "base_link")
self.l_wheel_link: Link = get_obj_by_name(
self.robot.get_links(), "l_wheel_link"
)
self.r_wheel_link: Link = get_obj_by_name(
self.robot.get_links(), "r_wheel_link"
)
for link in [self.base_link, self.l_wheel_link, self.r_wheel_link]:
cs = link._bodies[0].get_collision_shapes()[0]
cg = cs.get_collision_groups()
cg[2] = FETCH_UNIQUE_COLLISION_BIT
cs.set_collision_groups(cg)

# angle between impulse and open direction
langle = np_compute_angle_between(ldirection, limpulse)
rangle = np_compute_angle_between(rdirection, rimpulse)
self.queries: Dict[str, Tuple[physx.PhysxGpuContactQuery, Tuple[int]]] = dict()

lflag = (
np.linalg.norm(limpulse) >= min_impulse
and np.rad2deg(langle) <= max_angle
def is_grasping(self, object: Actor = None, min_impulse=1e-6, max_angle=85):
# TODO (stao): is_grasping code needs to be updated for new GPU sim
if physx.is_gpu_enabled():
if object.name not in self.queries:
body_pairs = list(zip(self.finger1_link._bodies, object._bodies))
body_pairs += list(zip(self.finger2_link._bodies, object._bodies))
self.queries[object.name] = (
self.scene.px.gpu_create_contact_query(body_pairs),
(len(object._bodies), 3),
)
print(f"Create query for Fetch grasp({object.name})")
query, contacts_shape = self.queries[object.name]
self.scene.px.gpu_query_contacts(query)
# query.cuda_contacts # (num_unique_pairs * num_envs, 3)
contacts = query.cuda_contacts.clone().reshape((-1, *contacts_shape))
lforce = torch.linalg.norm(contacts[0], axis=1)
rforce = torch.linalg.norm(contacts[1], axis=1)

# NOTE (stao): 0.5 * time_step is a decent value when tested on a pick cube task.
min_force = 0.5 * self.scene.px.timestep

# direction to open the gripper
ldirection = -self.finger1_link.pose.to_transformation_matrix()[..., :3, 1]
rdirection = self.finger2_link.pose.to_transformation_matrix()[..., :3, 1]
langle = compute_angle_between(ldirection, contacts[0])
rangle = compute_angle_between(rdirection, contacts[1])
lflag = torch.logical_and(
lforce >= min_force, torch.rad2deg(langle) <= max_angle
)
rflag = (
np.linalg.norm(rimpulse) >= min_impulse
and np.rad2deg(rangle) <= max_angle
rflag = torch.logical_and(
rforce >= min_force, torch.rad2deg(rangle) <= max_angle
)

return all([lflag, rflag])
return torch.logical_and(lflag, rflag)
else:
contacts = self.scene.get_contacts()

if object is None:
finger1_contacts = get_actor_contacts(
contacts, self.finger1_link._bodies[0].entity
)
finger2_contacts = get_actor_contacts(
contacts, self.finger2_link._bodies[0].entity
)
return (
np.linalg.norm(compute_total_impulse(finger1_contacts))
>= min_impulse
and np.linalg.norm(compute_total_impulse(finger2_contacts))
>= min_impulse
)
else:
limpulse = get_pairwise_contact_impulse(
contacts,
self.finger1_link._bodies[0].entity,
object._bodies[0].entity,
)
rimpulse = get_pairwise_contact_impulse(
contacts,
self.finger2_link._bodies[0].entity,
object._bodies[0].entity,
)

# direction to open the gripper
ldirection = -self.finger1_link.pose.to_transformation_matrix()[
..., :3, 1
]
rdirection = self.finger2_link.pose.to_transformation_matrix()[
..., :3, 1
]

# TODO Convert this to batched code
# angle between impulse and open direction
langle = np_compute_angle_between(ldirection[0], limpulse)
rangle = np_compute_angle_between(rdirection[0], rimpulse)

lflag = (
np.linalg.norm(limpulse) >= min_impulse
and np.rad2deg(langle) <= max_angle
)
rflag = (
np.linalg.norm(rimpulse) >= min_impulse
and np.rad2deg(rangle) <= max_angle
)

return all([lflag, rflag])

@staticmethod
def build_grasp_pose(approaching, closing, center):
Expand All @@ -299,21 +419,7 @@ def build_grasp_pose(approaching, closing, center):
return sapien.Pose(T)

@property
def sensor_configs(self):
return [
CameraConfig(
uid="fetch_head",
p=[0, 0, 0],
q=[0.9238795, 0, 0.3826834, 0],
width=128,
height=128,
fov=1.57,
near=0.01,
far=10,
entity_uid="head_camera_link",
)
]

@property
def tcp_pose_p(self):
return (self.finger1_link.pose.p + self.finger2_link.pose.p) / 2
def tcp_pose(self) -> Pose:
p = (self.finger1_link.pose.p + self.finger2_link.pose.p) / 2
q = (self.finger1_link.pose.q + self.finger2_link.pose.q) / 2
return Pose.create_from_pq(p=p, q=q)
Loading

0 comments on commit 140a8c9

Please sign in to comment.