** /!\ Work in progress, this README needs to be completed. **
To demonstrate a Smart Meter Big Data Application.
> python3 -i ./start-services.py
>>> run_inject()
>>> run_app_batch()
...
>>> stop_all()
...
>>> exit()
Setup the Grafana Data Sources (see bellow) + Import gatling + max voltage.json
http://localhost/dashboard/db/gatling-max-voltage
In parallel, you can play with the number of injectors:
> docker service scale inject=2
> docker service scale inject=1
> ./build-local.sh
> ./stop.sh
> python3 -i start-services.py "local" "single" "local"
Images will be postfixed by -local
>>> run_inject()
> ssh -NL localhost:2374:/var/run/docker.sock [email protected] &
> python3 -i ./start-services.py "remote" "cluster"
> Remote Docker Client
>>> run_inject_aws()
...
>>> stop_all()
...
>>> exit()
Setup the Grafana Data Sources (see bellow) + Import gatling + max voltage - swarm.json.
The Injection demo architecture:
From Grafana, setup the Graphite, InfluxDB & Prometheus Data Sources (see bellow).
To access to the RAW Voltage Data:
> ./cqlsh.sh
Connected to Smartmeter Cluster at 127.0.0.1:9042.
[cqlsh 5.0.1 | Cassandra 3.5 | CQL spec 3.4.0 | Native protocol v4]
Use HELP for help.
cqlsh> select * from smartmeter.raw_data limit 2;
line | transformer | usagepoint | year | month | day | hour | minute | day_of_week | demand | val10 | val11 | val12 | val3 | val4 | val5 | val6 | val7 | val8 | val9 | voltage
------+-------------+------------+------+-------+-----+------+--------+-------------+--------+-------+-------+-------+------+------+------+------+------+------+------+-----------
11 | 2 | 5 | 2019 | 3 | 17 | 12 | 13 | 0 | 100 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 114.76842
11 | 2 | 5 | 2019 | 3 | 17 | 11 | 58 | 0 | 100 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 114.10834
See Multilayer perceptron classifier and SparkPredictionProcessor.scala
+-----+----------+----+--------------------+--------------------+---------+-----------+--------------------+----------+
|label| voltage|hour| hourSin| hourCos|dayOfWeek|temperature| features|prediction|
+-----+----------+----+--------------------+--------------------+---------+-----------+--------------------+----------+
| 0| 115.36195| 13| -12.940958284226115| -48.296289698960514| 0| -1.1098776|[-12.940958284226...| 0.0|
| 0|115.378006| 14| -24.999994594456457| -43.3012733101135| 0| 16.545746|[-24.999994594456...| 0.0|
| 0| 116.9641| 3| 35.35533905932737| 35.35533905932738| 0| 4.004334|[35.3553390593273...| 0.0|
| 1| 118.92017| 23| -12.94095828422611| 48.296289698960514| 50| 21.167358|[-12.940958284226...| 0.0|
| 1| 119.15324| 12|6.123233995736766...| -50.0| 50| -12.110409|[6.12323399573676...| 1.0|
| 0| 115.1506| 14| -24.999994594456457| -43.3012733101135| 0| 10.854811|[-24.999994594456...| 0.0|
| 0|115.264404| 14| -24.999994594456457| -43.3012733101135| 0| 17.071587|[-24.999994594456...| 0.0|
.../...
| 1| 117.36004| 9| 35.35533905932738| -35.35533905932737| 50| -12.67373|[35.3553390593273...| 1.0|
| 1| 117.69681| 19| -48.29628969896052| 12.94095828422609| 50| 17.909231|[-48.296289698960...| 0.0|
| 1|117.809166| 21| -35.355339059327385| 35.35533905932737| 0| 7.070238|[-35.355339059327...| 1.0|
| 0| 115.50017| 16| -43.30127331011349| -24.99999459445649| 0| 18.125008|[-43.301273310113...| 0.0|
+-----+----------+----+--------------------+--------------------+---------+-----------+--------------------+----------+
only showing top 20 rows
Test set accuracy = 0.9642857142857143
The generated ML Models are stored in HDFS (on port 50070
): Browsing HDFS
Setup the Grafana Data Sources + Import NATS Servers.json.
- Get the Driver from http://www.simba.com/drivers/cassandra-odbc-jdbc/
- Follow the Installation Instructions (on MacOS, don't forget first to install iODBC)
- Save the Licence file you received by Mail (
SimbaApacheCassandraODBCDriver.lic
) into the right location
- Define a SDN file, such as excel/cassandra.dsn
- You could load & test it directly through the iODBC Administrator App:
- You might use the SQL syntax, such as
select * from smartmeter.raw_data limit 10;
- Et Voilà!