Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add embedding caching to reduce inference costs. #140

Merged
merged 1 commit into from
Nov 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 44 additions & 17 deletions optformer/embed_then_regress/icl_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def setup(self):
self.embedder = self.embedder_factory()

# X, Y, and concatenated X,Y embedders.
self.x_proj = nn.Sequential(
self.xm_proj = nn.Sequential(
[Dense(self.d_model), nn.relu, Dense(self.d_model)]
)
self.y_proj = nn.Sequential(
Expand Down Expand Up @@ -136,20 +136,43 @@ def __call__(
mask: jt.Bool[jax.Array, 'B L'],
deterministic: bool | None = None,
rng: jax.Array | None = None,
) -> tuple[jt.Float[jax.Array, 'B L'], jt.Float[jax.Array, 'B L']]:
embedding_cache: dict[str, jax.Array] | None = None,
) -> tuple[
jt.Float[jax.Array, 'B L'],
jt.Float[jax.Array, 'B L'],
dict[str, jax.Array],
]:
# pylint: disable=invalid-name

B, L, T = x.shape
x = jnp.reshape(x, (B * L, T))
x = self.embed(x) # [B*L, E]
x = jnp.reshape(x, (B, L, -1)) # [B, L, E]

metadata = self.embed(metadata) # [B, E]
metadata = jnp.expand_dims(metadata, axis=1) # [B, 1, E]
metadata = jnp.repeat(metadata, L, axis=1) # [B, L, E]
x = jnp.concatenate((x, metadata), axis=-1) # [B, L, 2E]

xt_emb = self.x_proj(x) # [B, L, D]
L = x.shape[1]

if embedding_cache is None:
x_emb = self.embed(x) # [B, L, E]
metadata_emb = self.embed(metadata) # [B, E]
embedding_cache = {'x': x_emb, 'metadata': metadata_emb}
else:
# Find starting index of target. Raise value error if masks are not all
# same, since dynamic_update_slice wouldn't work.
target_indices = jnp.sum(mask, axis=-1, dtype=jnp.int32)
if not jnp.all(target_indices == target_indices[0]):
raise ValueError('At inference, all masks must be the same in batch.')
target_index = target_indices[0]

# Embed only the new tokens.
target_x = x[:, target_index:, :] # [B=1, target_index, T]
target_x_emb = self.embed(target_x) # [B=1, target_index, E]

x_emb = jax.lax.dynamic_update_slice(
embedding_cache['x'],
target_x_emb,
start_indices=(0, target_index, 0),
)
metadata_emb = embedding_cache['metadata']

metadata_emb = jnp.expand_dims(metadata_emb, axis=1) # [B, 1, E]
metadata_emb = jnp.repeat(metadata_emb, L, axis=1) # [B, L, E]
xm_emb = jnp.concatenate((x_emb, metadata_emb), axis=-1) # [B, L, 2E]

xt_emb = self.xm_proj(xm_emb) # [B, L, D]

# Force 0.0 values for target points using the mask.
y = y * mask # [B, L], element-wise multiplication
Expand All @@ -173,8 +196,12 @@ def __call__(

mean = jnp.squeeze(mean, axis=-1)
std = jnp.squeeze(std, axis=-1)
return mean, std
return mean, std, embedding_cache

@nn.remat # Reduce memory consumption during backward pass.
def embed(self, tokens: jt.Int[jax.Array, 'X T']):
return self.embedder(tokens)
def embed(
self, tokens: jt.Int[jax.Array, '*X T']
) -> jt.Float[jax.Array, '*X E']:
reshaped_tokens = jnp.reshape(tokens, (-1, tokens.shape[-1]))
embeddings = self.embedder(reshaped_tokens) # [-1, E]
return jnp.reshape(embeddings, tokens.shape[:-1] + (embeddings.shape[-1],))
31 changes: 20 additions & 11 deletions optformer/embed_then_regress/regressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,18 +40,21 @@ class StatefulICLRegressor:
params: flax_typing.FrozenVariableDict = attrs.field()
vocab: seqio.Vocabulary = attrs.field()

max_trial_length: int = attrs.field(default=300, kw_only=True) # L
max_memory_length: int = attrs.field(default=10000, kw_only=True) # M >> L
max_token_length: int = attrs.field(default=256, kw_only=True) # T

warper: normalization.StatefulWarper = attrs.field(
factory=normalization.default_warper, kw_only=True
)

# Internal state containing tokens.
_all_xt: jt.Int[np.ndarray, 'L T'] = attrs.field(init=False)
_all_yt: jt.Float[np.ndarray, 'L'] = attrs.field(init=False)
# Internal state containing history.
_all_xt: jt.Int[np.ndarray, 'M T'] = attrs.field(init=False)
_all_yt: jt.Float[np.ndarray, 'M'] = attrs.field(init=False)
_mt: jt.Int[np.ndarray, 'T'] = attrs.field(init=False)
_num_prev: int = attrs.field(init=False)
_embedding_cache: dict[str, jax.Array] | None = attrs.field(init=False)

# Jitted function.
_jit_apply: Callable[..., Any] = attrs.field(init=False)

def __attrs_post_init__(self):
Expand All @@ -64,25 +67,29 @@ def predict(self, xs: Sequence[str]) -> tfd.Distribution:
"""Returns prediction in normalized/warped space."""
num_query = len(xs)

temp_xt = np.copy(self._all_xt)
temp_xt[self._num_prev : self._num_prev + num_query] = self._tokenize(xs)
# Use instead of max_memory_length to reduce embedding costs.
max_trial_length = self._num_prev + num_query # L

temp_xt = np.copy(self._all_xt)[:max_trial_length]
temp_xt[self._num_prev :] = self._tokenize(xs)

temp_yt = np.copy(self._all_yt)
temp_yt = np.copy(self._all_yt)[:max_trial_length]
temp_yt = self.warper.warp(temp_yt)

temp_mt = np.copy(self._mt)

mask = np.ones(self.max_trial_length, dtype=bool)
mask = np.ones(max_trial_length, dtype=bool)
mask[self._num_prev :] = False

# Need to add batch dimension to all inputs.
mean, std = self._jit_apply(
mean, std, self._embedding_cache = self._jit_apply(
self.params,
x=np.expand_dims(temp_xt, axis=0), # [B=1, L, T],
y=np.expand_dims(temp_yt, axis=0), # [B=1, L],
metadata=np.expand_dims(temp_mt, axis=0), # [B=1, T],
mask=np.expand_dims(mask, axis=0), # [B=1, L],
deterministic=True,
embedding_cache=self._embedding_cache,
)

mean, std = np.squeeze(mean, axis=0), np.squeeze(std, axis=0)
Expand All @@ -97,6 +104,7 @@ def absorb(self, xs: Sequence[str], ys: Sequence[float]):
self._all_xt[self._num_prev : self._num_prev + num_pts] = self._tokenize(xs)
self._all_yt[self._num_prev : self._num_prev + num_pts] = np.array(ys)
self._num_prev += num_pts
self._embedding_cache = None # Need to recompute historical embeddings.

self.warper.train(self._all_yt[: self._num_prev])

Expand All @@ -105,11 +113,12 @@ def set_metadata(self, metadata: str) -> None:

def reset(self) -> None:
self._all_xt = np.zeros(
(self.max_trial_length, self.max_token_length), dtype=np.int32
(self.max_memory_length, self.max_token_length), dtype=np.int32
)
self._all_yt = np.zeros(self.max_trial_length, dtype=np.float32)
self._all_yt = np.zeros(self.max_memory_length, dtype=np.float32)
self._mt = np.zeros(self.max_token_length, dtype=np.int32)
self._num_prev = 0
self._embedding_cache = None

def _tokenize(self, ss: Sequence[str]) -> jt.Int[np.ndarray, 'S T']:
"""Converts ss (strings) to tokens."""
Expand Down
4 changes: 3 additions & 1 deletion optformer/embed_then_regress/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,9 @@ def loss_fn(
) -> tuple[jax.Array, Mapping[str, Scalar]]:
"""Loss function with metrics."""
# pylint: disable=invalid-name
mean, std = model.apply(params, deterministic=not training, rng=rng, **batch)
mean, std, _ = model.apply(
params, deterministic=not training, rng=rng, **batch
)
nlogprob = -jax.scipy.stats.norm.logpdf(batch['y'], mean, std) # [B, L]

# Only compute loss over target ys. Mask is BxL where True denotes context
Expand Down
6 changes: 1 addition & 5 deletions optformer/embed_then_regress/vizier/designer.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,10 +40,6 @@
use_fori=False,
)

default_scoring_function_factory = acq_lib.bayesian_scoring_function_factory(
lambda _: acq_lib.UCB()
)


@attrs.define
class TransformerICLOptDesigner(vza.Designer):
Expand All @@ -57,7 +53,7 @@ class TransformerICLOptDesigner(vza.Designer):
default=default_optimizer_factory, kw_only=True
)
_acq_fn: acq_lib.AcquisitionFunction = attrs.field(
default=acq_lib.UCB(), kw_only=True
factory=acq_lib.UCB, kw_only=True
)

_rng: jax.Array = attrs.field(
Expand Down
Loading