-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add more regression metrics for logging
PiperOrigin-RevId: 693753319
- Loading branch information
1 parent
840260a
commit 69d1ed1
Showing
3 changed files
with
85 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# Copyright 2024 Google LLC. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Compute regression-related metrics.""" | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import jaxtyping as jt | ||
|
||
EPS = 1e-7 | ||
Scalar = jt.Float[jax.Array, ''] | ||
|
||
|
||
def masked_mean( | ||
values: jt.Float[jax.Array, 'B L'], | ||
target_mask: jt.Bool[jax.Array, 'B L'], | ||
) -> jt.Float[jax.Array, 'B']: | ||
"""Calculate means, only considering mask=True values.""" | ||
values = values * target_mask # [B, L] | ||
return jnp.sum(values, axis=1) / jnp.sum(target_mask, axis=1) # [B] | ||
|
||
|
||
def pointwise_mse( | ||
mu: jt.Float[jax.Array, 'B L'], | ||
ys: jt.Float[jax.Array, 'B L'], | ||
target_mask: jt.Bool[jax.Array, 'B L'], | ||
) -> Scalar: | ||
"""Pointwise MSE.""" | ||
squared_error = jnp.square(ys - mu) | ||
mse = masked_mean(squared_error, target_mask) | ||
return jnp.mean(mse) # [B] -> Scalar | ||
|
||
|
||
def pointwise_r2( | ||
mu: jt.Float[jax.Array, 'B L'], | ||
ys: jt.Float[jax.Array, 'B L'], | ||
target_mask: jt.Bool[jax.Array, 'B L'], | ||
) -> Scalar: | ||
"""Pointwise R2.""" | ||
# Calculate centered values. | ||
|
||
mu_mean = jnp.expand_dims(masked_mean(mu, target_mask), axis=-1) # [B, 1] | ||
ys_mean = jnp.expand_dims(masked_mean(ys, target_mask), axis=-1) # [B, 1] | ||
|
||
mu_centered = (mu - mu_mean) * target_mask # [B, L] | ||
ys_centered = (ys - ys_mean) * target_mask # [B, L] | ||
|
||
# Calculate covariance and standard deviations. | ||
covariance = jnp.sum(mu_centered * ys_centered, axis=1) # [B] | ||
std_mu = jnp.sqrt(jnp.sum(mu_centered**2, axis=1)) # [B] | ||
std_ys = jnp.sqrt(jnp.sum(ys_centered**2, axis=1)) # [B] | ||
|
||
# Calculate correlation coefficient | ||
corrcoef = covariance / (std_mu * std_ys + EPS) # [B] | ||
return jnp.mean(corrcoef**2) # [B] -> Scalar | ||
|
||
|
||
def default_metrics( | ||
mu: jt.Float[jax.Array, 'B L'], | ||
ys: jt.Float[jax.Array, 'B L'], | ||
target_mask: jt.Bool[jax.Array, 'B L'], | ||
) -> dict[str, Scalar]: | ||
"""Default metrics.""" | ||
return { | ||
'pointwise_mse': pointwise_mse(mu, ys, target_mask), | ||
'pointwise_r2': pointwise_r2(mu, ys, target_mask), | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters