Skip to content

Commit

Permalink
save
Browse files Browse the repository at this point in the history
  • Loading branch information
glouppe committed Nov 8, 2023
1 parent df7c0e3 commit b87c104
Show file tree
Hide file tree
Showing 3 changed files with 15 additions and 7 deletions.
Binary file modified figures/lec7/cat2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
22 changes: 15 additions & 7 deletions lecture7.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,25 +59,25 @@ class: middle
---

count: false
class: black-slide, middle
class: middle

.center.width-50[![](figures/lec7/cat2.png)]
.center.width-60[![](figures/lec7/cat2.png)]

.center[The good old-fashioned approach.]

---

count: false
class: black-slide, middle

.center.width-80[![](figures/lec7/cat3.png)]
background-image: url(./figures/lec7/cat3.png)
background-size: cover

---

count: false
class: black-slide, middle

.center.width-80[![](figures/lec7/cat4.png)]
background-image: url(./figures/lec7/cat4.png)
background-size: cover

---

Expand Down Expand Up @@ -150,7 +150,7 @@ where $\mathbf{w}$ and $b$ are parameters to determine.
<br><br>

To learn the conditional distribution $p(y|\mathbf{x})$, we maximize
$$p(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-(\mathbf{w}^T \mathbf{x} + b))^2}{2\sigma^2}\right)$$
$$p(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\frac{(y-(\mathbf{w}^T \mathbf{x} + b))^2}{\sigma^2}\right)$$
w.r.t. $\mathbf{w}$ and $b$ over the data $\mathbf{d} = \\\{ (\mathbf{x}\_j, y\_j) \\\}$.

--
Expand Down Expand Up @@ -378,6 +378,10 @@ These units can be composed *in parallel* to form a **layer** with $q$ outputs:
$$\mathbf{h} = \sigma(\mathbf{W}^T \mathbf{x} + \mathbf{b})$$
where $\mathbf{h} \in \mathbb{R}^q$, $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{W} \in \mathbb{R}^{d\times q}$, $b \in \mathbb{R}^d$ and where $\sigma(\cdot)$ is upgraded to the element-wise sigmoid function.

???

Draw on the blackboard.

---

class: middle
Expand Down Expand Up @@ -547,6 +551,10 @@ For example,
$$\mathbf{h}\_{t} = \sigma(\mathbf{W}\_{xh}^T \mathbf{x} + \mathbf{W}\_{hh}^T \mathbf{h}\_{t-1} + \mathbf{b}),$$
where $\mathbf{h}\_{t-1}$ is the previous hidden state in the sequence.

???

Skip or go fast.

---

class: middle
Expand Down
Binary file modified pdf/lec7.pdf
Binary file not shown.

0 comments on commit b87c104

Please sign in to comment.