Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: conv integer #595

Merged
merged 2 commits into from
Apr 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@
* [nn.col2im](framework/operators/neural-network/nn.col2im.md)
* [nn.conv\_transpose](framework/operators/neural-network/nn.conv\_transpose.md)
* [nn.conv](framework/operators/neural-network/nn.conv.md)
* [nn.conv_integer](framework/operators/neural-network/nn.conv\_integer.md)
* [nn.depth_to_space](framework/operators/neural-network/nn.depth_to_space.md)
* [nn.space_to_depth](framework/operators/neural-network/nn.space_to_depth.md)
* [nn.max\_pool](framework/operators/neural-network/nn.max\_pool.md)
Expand Down
1 change: 1 addition & 0 deletions docs/framework/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ You can see below the list of current supported ONNX Operators:
| [Col2im](operators/neural-network/nn.col2im\_sigmoid.md) | :white\_check\_mark: |
| [ConvTranspose](operators/neural-network/nn.conv\_transpose_.md) | :white\_check\_mark: |
| [Conv](operators/neural-network/nn.conv.md) | :white\_check\_mark: |
| [ConvInteger](operators/neural-network/nn.conv\_integer_.md) | :white\_check\_mark: |
| [MaxPool](operators/neural-network/nn.max\_pool.md) | :white\_check\_mark: |
| [DeformConv](operators/neural-network/nn.deform\_conv_.md) | :white\_check\_mark: |
| [Sinh](operators/tensor/tensor.sinh.md) | :white\_check\_mark: |
Expand Down
1 change: 1 addition & 0 deletions docs/framework/operators/neural-network/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,4 +39,5 @@ Orion supports currently these `NN` types.
| [`nn.col2im`](nn.col2im.md) | Rearranges column blocks back into a multidimensional image |
| [`nn.conv_transpose`](nn.conv\_transpose.md) | Performs the convolution transpose of the input data tensor and weight tensor. |
| [`nn.conv`](nn.conv.md) | Performs the convolution of the input data tensor and weight tensor. |
| [`nn.conv_integer`](nn.conv\_integer.md) | Performs integer convolution |

122 changes: 122 additions & 0 deletions docs/framework/operators/neural-network/nn.conv_integer.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# tensor.conv_integer

```rust

fn conv_integer(
X: @Tensor<T>,
W: @Tensor<T>,
X_zero_point: Option<@Tensor<T>>,
W_zero_point: Option<@Tensor<T>>,
auto_pad: Option<AUTO_PAD>,
dilations: Option<Span<usize>>,
group: Option<usize>,
kernel_shape: Option<Span<usize>>,
pads: Option<Span<usize>>,
strides: Option<Span<usize>>,
) -> Tensor<T>;
```

Performs integer convolution

The integer convolution operator consumes an input tensor, its zero-point, a filter, and its zero-point, and computes the output.

## Args

* `X`(`@Tensor<i8>`) - Input data tensor, has size (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is (N x C x D1 x D2 ... x Dn)..
* `W`(`@Tensor<i8>`) - Weight tensor that will be used in the convolutions; has size (M x C/group x kH x kW), where C is the number of channels, and kH and kW are the height and width of the kernel, and M is the number of feature maps. For more than 2 dimensions, the kernel shape will be (M x C/group x k1 x k2 x ... x kn), where (k1 x k2 x ... kn) is the dimension of the kernel.
* `X_zero_point`(`@Tensor<T>`) - Zero point for input `X`
* `W_zero_point`(`@Tensor<T>`) - Zero point for input `W`.
* `auto_pad`(`Option<AUTO_PAD>`) - Default is NOTSET, auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. NOTSET means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that `output_shape[i] = ceil(input_shape[i] / strides[i])` for each axis `i`.
* `dilations`(`Option<Span<usize>>`) - Dilation value along each spatial axis of the filter. If not present, the dilation defaults to 1 along each spatial axis.
* `group`(`Option<usize>`) - Default is 1, number of groups input channels and output channels are divided into.
* `kernel_shape`(`Option<Span<usize>>`) - The shape of the convolution kernel. If not present, should be inferred from input W.
* `pads`(`Option<Span<usize>>`) - Padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
* `strides`(`Option<Span<usize>>`) - Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.

## Returns

A new `Tensor<usize>`, containing the result of the convolution of the inputs.


## Example

```rust
use core::array::{ArrayTrait, SpanTrait};

use orion::operators::tensor::{TensorTrait, Tensor, I8Tensor, U32Tensor};
use orion::operators::nn::NNTrait;
use orion::operators::nn::U32NN;

fn example_conv_integer() -> Tensor<usize> {
let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(3);
shape.append(3);

let mut data = ArrayTrait::new();
data.append(2);
data.append(3);
data.append(4);
data.append(5);
data.append(6);
data.append(7);
data.append(8);
data.append(9);
data.append(10);
let mut X = TensorTrait::<i8>::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(2);
shape.append(2);

let mut data = ArrayTrait::new();
data.append(1);
data.append(1);
data.append(1);
data.append(1);
let mut W = TensorTrait::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(1);
shape.append(1);

let mut data = ArrayTrait::new();
data.append(1);
let X_zero_point = TensorTrait::<i8>::new(shape.span(), data.span());


let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(2);
shape.append(2);

let mut data = ArrayTrait::new();
data.append(12);
data.append(16);
data.append(24);
data.append(28);
let expected_output = TensorTrait::new(shape.span(), data.span());

'data ok'.print();

return NNTrait::conv_integer(
@X,
@W,
Option::Some(@X_zero_point),
Option::None,
Option::None,
Option::None,
Option::None,
Option::None,
Option::None,
Option::None,
);
}
>>> [[12, 16], [24, 28]]
```
116 changes: 116 additions & 0 deletions nodegen/node/conv_integer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, Tensor, Dtype, Trait
from .conv import conv

import numpy as np

def conv_integer(
X,
W,
x_zero_point=None,
w_zero_point=None,
auto_pad=None,
dilations=None,
group=None,
kernel_shape=None,
pads=None,
strides=None,
):
if len(X.shape) < 3:
raise ValueError(
f"X must have at least 3 dimensions but its shape is {X.shape}."
)
X = X.astype(np.int32)
if x_zero_point:
X -= x_zero_point
W = W.astype(np.int32)
if w_zero_point:
W -= w_zero_point
return (
conv(
X, W, None, auto_pad, dilations, group, kernel_shape, pads, strides
).astype(np.int32),
)


class Conv_integer(RunAll):

@staticmethod
def export_without_padding() -> None:
x = (
np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])
.astype(np.uint8)
.reshape((1, 1, 3, 3))
)
x_zero_point = (
np.array([1])
.astype(np.uint8)
.reshape((1, 1, 1, 1))
)
w = np.array([1, 1, 1, 1]).astype(np.uint8).reshape((1, 1, 2, 2))


y = conv_integer(x,w, x_zero_point)
y = np.array(y[0])

x = Tensor(Dtype.I8, x.shape, x.flatten())
x_zero_point = Tensor(Dtype.I8, x_zero_point.shape, x_zero_point.flatten())
w = Tensor(Dtype.I8, w.shape, w.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "conv_interger_no_padding"
func_sig = "NNTrait::conv_integer("
func_sig += "@input_0,"
func_sig += "@input_1,"
func_sig += "Option::Some(@input_2),"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None)"
make_test(
[x, w, x_zero_point], y, func_sig, name, Trait.NN)

@staticmethod
def export_with_padding() -> None:
x = (
np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])
.astype(np.uint8)
.reshape((1, 1, 3, 3))
)
x_zero_point = (
np.array([1])
.astype(np.uint8)
.reshape((1, 1, 1, 1))
)
w = np.array([1, 1, 1, 1]).astype(np.uint8).reshape((1, 1, 2, 2))

y = conv_integer(x,w, x_zero_point=x_zero_point, pads=[1, 1, 1, 1])
y = np.array(y[0])

x = Tensor(Dtype.I8, x.shape, x.flatten())
x_zero_point = Tensor(Dtype.I8, x_zero_point.shape, x_zero_point.flatten())
w = Tensor(Dtype.I8, w.shape, w.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "conv_interger_with_padding"
func_sig = "NNTrait::conv_integer("
func_sig += "@input_0,"
func_sig += "@input_1,"
func_sig += "Option::Some(@input_2),"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::None,"
func_sig += "Option::Some(array![1, 1, 1, 1].span()),"
func_sig += "Option::None)"
make_test(
[x, w, x_zero_point], y, func_sig, name, Trait.NN)




Loading
Loading