The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure. We hope that our this will help improve evaluation quality, reproducibility, and comparability in future studies in the field of medical image segmentation.
- Use DSC as main metric for validation and performance interpretation.
- Use AHD for interpretation on point position sensitivity (contour) if needed.
- Avoid any interpretations based on high pixel accuracy scores.
- Provide next to DSC also IoU, Sensitivity, and Specificity for method comparability.
- Provide sample visualizations, comparing the annotated and predicted segmentation, for visual evaluation as well as to avoid statistical bias.
- Avoid cherry-picking high-scoring samples.
- Provide histograms or box plots showing the scoring distribution across the dataset.
- For multi-class problems, provide metric computations for each class individually.
- Avoid confirmation bias through macro-averaging classes which is pushing scores via background class inclusion.
- Provide access to evaluation scripts and results with journal data services or third-party services like GitHub and Zenodo for easier reproducibility.
Metric | Index in miseval | Function in miseval |
---|---|---|
Dice Similarity Index | "DSC", "Dice", "DiceSimilarityCoefficient" | miseval.calc_DSC() |
Intersection-Over-Union | "IoU", "Jaccard", "IntersectionOverUnion" | miseval.calc_IoU() |
Sensitivity | "SENS", "Sensitivity", "Recall", "TPR", "TruePositiveRate" | miseval.calc_Sensitivity() |
Specificity | "SPEC", "Specificity", "TNR", "TrueNegativeRate" | miseval.calc_Specificity() |
Precision | "PREC", "Precision" | miseval.calc_Precision() |
Accuracy | "ACC", "Accuracy", "RI", "RandIndex" | miseval.calc_Accuracy() |
Balanced Accuracy | "BACC", "BalancedAccuracy" | miseval.calc_BalancedAccuracy() |
Adjusted Rand Index | "ARI", "AdjustedRandIndex" | miseval.calc_AdjustedRandIndex() |
AUC | "AUC", "AUC_trapezoid" | miseval.calc_AUC() |
Cohen's Kappa | "KAP", "Kappa", "CohensKappa" | miseval.calc_Kappa() |
Hausdorff Distance | "HD", "HausdorffDistance" | miseval.calc_SimpleHausdorffDistance() |
Average Hausdorff Distance | "AHD", "AverageHausdorffDistance" | miseval.calc_AverageHausdorffDistance() |
Volumetric Similarity | "VS", "VolumetricSimilarity" | miseval.calc_VolumetricSimilarity() |
Matthews Correlation Coefficient | "MCC", "MatthewsCorrelationCoefficient" | miseval.calc_MCC() |
Normalized Matthews Correlation Coefficient | "nMCC", "MCC_normalized" | miseval.calc_MCC_Normalized() |
Absolute Matthews Correlation Coefficient | "aMCC", "MCC_absolute" | miseval.calc_MCC_Absolute() |
Boundary Distance | "BD", "Distance", " BoundaryDistance" | miseval.calc_Boundary_Distance() |
Hinge Loss | "Hinge", "HingeLoss" | miseval.calc_Hinge() |
Cross-Entropy | "CE", "CrossEntropy" | miseval.calc_CrossEntropy() |
True Positive | "TP", "TruePositive" | miseval.calc_TruePositive() |
False Positive | "FP", "FalsePositive" | miseval.calc_FalsePositive() |
True Negative | "TN", "TrueNegative" | miseval.calc_TrueNegative() |
False Negative | "FN", "FalseNegative" | miseval.calc_FalseNegative() |
List of available distances:
Bhattacharyya distance bhattacharyya
Bhattacharyya coefficient bhattacharyya_coefficient
Canberra distance canberra
Chebyshev distance chebyshev
Chi Square distance chi_square
Cosine Distance cosine
Euclidean distance euclidean
Hamming distance hamming
Jensen-Shannon divergence jensen_shannon
Kullback-Leibler divergence kullback_leibler
Mean absolute error mae
Taxicab geometry manhattan, cityblock, total_variation
Minkowski distance minkowsky
Mean squared error mse
Pearson's distance pearson
Squared deviations from the mean squared_variation
Distance Pooling (how to combine computed distances to a single value):
Distance Sum sum
Distance Averaging mean
Minimum Distance amin
Maximum Distance amax
# load libraries
import numpy as np
from miseval import evaluate
# Get some ground truth / annotated segmentations
np.random.seed(1)
real_bi = np.random.randint(2, size=(64,64)) # binary (2 classes)
real_mc = np.random.randint(5, size=(64,64)) # multi-class (5 classes)
# Get some predicted segmentations
np.random.seed(2)
pred_bi = np.random.randint(2, size=(64,64)) # binary (2 classes)
pred_mc = np.random.randint(5, size=(64,64)) # multi-class (5 classes)
# Run binary evaluation
dice = evaluate(real_bi, pred_bi, metric="DSC")
# returns single np.float64 e.g. 0.75
# Run multi-class evaluation
dice_list = evaluate(real_mc, pred_mc, metric="DSC", multi_class=True,
n_classes=5)
# returns array of np.float64 e.g. [0.9, 0.2, 0.6, 0.0, 0.4]
# for each class, one score
Every metric in miseval can be called via our core function evaluate()
.
The miseval eavluate function can be run with different metrics as backbone.
You can pass the following options to the metric parameter:
- String naming one of the metric labels, for example "DSC"
- Directly passing a metric function, for example calc_DSC_Sets (from dice.py)
- Passing a custom metric function
List of metrics : See miseval/__init__.py
under section "Access Functions to Metric Functions"
The classes in a segmentation mask must be ongoing starting from 0 (integers from 0 to n_classes-1).
A segmentation mask is allowed to have either no channel axis or just 1 (e.g. 512x512x1), which contains the annotation.
"""
Arguments:
truth (NumPy Matrix): Ground Truth segmentation mask.
pred (NumPy Matrix): Prediction segmentation mask.
metric (String or Function): Metric function. Either a function directly or encoded as
String from miseval or a custom function.
multi_class (Boolean): Boolean parameter, if segmentation is a binary or multi-class
problem. By default False -> Binary mode.
n_classes (Integer): Number of classes. By default 2 -> Binary
kwargs (arguments): Additional arguments for passing down to metric functions.
Output:
score (Float) or scores (List of Float)
The multi_class parameter defines the output of this function.
If n_classes > 2, multi_class is automatically True.
If multi_class == False & n_classes == 2, only a single score (float) is returned.
If multi_class == True, multiple scores as a list are returned (for each class one score).
"""
def evaluate(truth, pred, metric, multi_class=False, n_classes=2, **kwargs)
- Install miseval from PyPI (recommended):
pip install miseval
- Alternatively: install miseval from the GitHub source:
First, clone miseval using git:
git clone https://github.com/frankkramer-lab/miseval
Then, go into the miseval folder and run the install command:
cd miseval
python setup.py install
Dominik Müller
Email: [email protected]
IT-Infrastructure for Translational Medical Research
University Augsburg
Bavaria, Germany
Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer. (2022)
MISeval: a Metric Library for Medical Image Segmentation Evaluation.
PubMed: https://pubmed.ncbi.nlm.nih.gov/35612011/
DOI: https://doi.org/10.3233/shti220391
arXiv e-print: https://arxiv.org/abs/2201.09395
@Article{misevalMUELLER2022,
title={MISeval: a Metric Library for Medical Image Segmentation Evaluation},
author={Dominik Müller, Dennis Hartmann, Philip Meyer, Florian Auer, Iñaki Soto-Rey, Frank Kramer},
year={2022},
journal={Studies in health technology and informatics},
volume={294},
number={},
pages={33-37},
doi={10.3233/shti220391},
eprint={2201.09395},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Thank you for citing our work.
This project is licensed under the GNU GENERAL PUBLIC LICENSE Version 3.
See the LICENSE.md file for license rights and limitations.