Skip to content

Commit

Permalink
replaced all pymc potential with pymc censored (pymc-devs#750)
Browse files Browse the repository at this point in the history
* replaced all pymc potential with pymc censored

* removed gumbel_sf function that is not being used

* added rng to samplers

* put back seeds for sampling data observations

---------

Co-authored-by: Jonathan Dekermanjian <[email protected]>
  • Loading branch information
2 people authored and fonnesbeck committed Dec 20, 2024
1 parent 6da7b86 commit 8c241cb
Show file tree
Hide file tree
Showing 2 changed files with 377 additions and 322 deletions.
615 changes: 325 additions & 290 deletions examples/survival_analysis/weibull_aft.ipynb

Large diffs are not rendered by default.

84 changes: 52 additions & 32 deletions examples/survival_analysis/weibull_aft.myst.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,9 @@ kernelspec:
display_name: pymc
language: python
name: python3
myst:
substitutions:
extra_dependencies: statsmodels
---

(weibull_aft)=
Expand All @@ -25,15 +28,26 @@ import arviz as az
import numpy as np
import pymc as pm
import pytensor.tensor as pt
import statsmodels.api as sm
print(f"Running on PyMC v{pm.__version__}")
```

:::{include} ../extra_installs.md
:::

```{code-cell} ipython3
# These dependencies need to be installed separately from PyMC
import statsmodels.api as sm
```

```{code-cell} ipython3
%config InlineBackend.figure_format = 'retina'
# These seeds are for sampling data observations
RANDOM_SEED = 8927
np.random.seed(RANDOM_SEED)
# Set a seed for reproducibility of posterior results
seed: int = sum(map(ord, "aft_weibull"))
rng: np.random.Generator = np.random.default_rng(seed=seed)
az.style.use("arviz-darkgrid")
```

Expand Down Expand Up @@ -71,7 +85,9 @@ censored[:5]

We have an unique problem when modelling censored data. Strictly speaking, we don't have any _data_ for censored values: we only know the _number_ of values that were censored. How can we include this information in our model?

One way do this is by making use of `pm.Potential`. The [PyMC2 docs](https://pymc-devs.github.io/pymc/modelbuilding.html#the-potential-class) explain its usage very well. Essentially, declaring `pm.Potential('x', logp)` will add `logp` to the log-likelihood of the model.
One way do this is by making use of `pm.Potential`. The [PyMC2 docs](https://pymc-devs.github.io/pymc/modelbuilding.html#the-potential-class) explain its usage very well. Essentially, declaring `pm.Potential('x', logp)` will add `logp` to the log-likelihood of the model.

However, `pm.Potential` only effect probability based sampling this excludes using `pm.sample_prior_predictice` and `pm.sample_posterior_predictive`. We can overcome these limitations by using `pm.Censored` instead. We can model our right-censored data by defining the `upper` argument of `pm.Censored`.

+++

Expand All @@ -80,36 +96,40 @@ One way do this is by making use of `pm.Potential`. The [PyMC2 docs](https://pym
This parameterization is an intuitive, straightforward parameterization of the Weibull survival function. This is probably the first parameterization to come to one's mind.

```{code-cell} ipython3
def weibull_lccdf(x, alpha, beta):
"""Log complementary cdf of Weibull distribution."""
return -((x / beta) ** alpha)
# normalize the event time between 0 and 1
y_norm = y / np.max(y)
```

```{code-cell} ipython3
# If censored then observed event time else maximum time
right_censored = [x if x > 0 else np.max(y_norm) for x in y_norm * censored]
```

```{code-cell} ipython3
with pm.Model() as model_1:
alpha_sd = 10.0
alpha_sd = 1.0
mu = pm.Normal("mu", mu=0, sigma=100)
mu = pm.Normal("mu", mu=0, sigma=1)
alpha_raw = pm.Normal("a0", mu=0, sigma=0.1)
alpha = pm.Deterministic("alpha", pt.exp(alpha_sd * alpha_raw))
beta = pm.Deterministic("beta", pt.exp(mu / alpha))
beta_backtransformed = pm.Deterministic("beta_backtransformed", beta * np.max(y))
y_obs = pm.Weibull("y_obs", alpha=alpha, beta=beta, observed=y[~censored])
y_cens = pm.Potential("y_cens", weibull_lccdf(y[censored], alpha, beta))
latent = pm.Weibull.dist(alpha=alpha, beta=beta)
y_obs = pm.Censored("Censored_likelihood", latent, upper=right_censored, observed=y_norm)
```

```{code-cell} ipython3
with model_1:
# Change init to avoid divergences
data_1 = pm.sample(target_accept=0.9, init="adapt_diag")
idata_param1 = pm.sample(nuts_sampler="numpyro", random_seed=rng)
```

```{code-cell} ipython3
az.plot_trace(data_1, var_names=["alpha", "beta"])
az.plot_trace(idata_param1, var_names=["alpha", "beta"])
```

```{code-cell} ipython3
az.summary(data_1, var_names=["alpha", "beta"], round_to=2)
az.summary(idata_param1, var_names=["alpha", "beta", "beta_backtransformed"], round_to=2)
```

## Parameterization 2
Expand All @@ -120,26 +140,26 @@ For more information, see [this Stan example model](https://github.com/stan-dev/

```{code-cell} ipython3
with pm.Model() as model_2:
alpha = pm.Normal("alpha", mu=0, sigma=10)
r = pm.Gamma("r", alpha=1, beta=0.001, testval=0.25)
alpha = pm.Normal("alpha", mu=0, sigma=1)
r = pm.Gamma("r", alpha=2, beta=1)
beta = pm.Deterministic("beta", pt.exp(-alpha / r))
beta_backtransformed = pm.Deterministic("beta_backtransformed", beta * np.max(y))
y_obs = pm.Weibull("y_obs", alpha=r, beta=beta, observed=y[~censored])
y_cens = pm.Potential("y_cens", weibull_lccdf(y[censored], r, beta))
latent = pm.Weibull.dist(alpha=r, beta=beta)
y_obs = pm.Censored("Censored_likelihood", latent, upper=right_censored, observed=y_norm)
```

```{code-cell} ipython3
with model_2:
# Increase target_accept to avoid divergences
data_2 = pm.sample(target_accept=0.9)
idata_param2 = pm.sample(nuts_sampler="numpyro", random_seed=rng)
```

```{code-cell} ipython3
az.plot_trace(data_2, var_names=["r", "beta"])
az.plot_trace(idata_param2, var_names=["r", "beta"])
```

```{code-cell} ipython3
az.summary(data_2, var_names=["r", "beta"], round_to=2)
az.summary(idata_param2, var_names=["r", "beta", "beta_backtransformed"], round_to=2)
```

## Parameterization 3
Expand All @@ -148,41 +168,41 @@ In this parameterization, we model the log-linear error distribution with a Gumb

```{code-cell} ipython3
logtime = np.log(y)
```

def gumbel_sf(y, mu, sigma):
"""Gumbel survival function."""
return 1.0 - pt.exp(-pt.exp(-(y - mu) / sigma))
```{code-cell} ipython3
# If censored then observed event time else maximum time
right_censored = [x if x > 0 else np.max(logtime) for x in logtime * censored]
```

```{code-cell} ipython3
with pm.Model() as model_3:
s = pm.HalfNormal("s", tau=5.0)
s = pm.HalfNormal("s", tau=3.0)
gamma = pm.Normal("gamma", mu=0, sigma=5)
y_obs = pm.Gumbel("y_obs", mu=gamma, beta=s, observed=logtime[~censored])
y_cens = pm.Potential("y_cens", gumbel_sf(y=logtime[censored], mu=gamma, sigma=s))
latent = pm.Gumbel.dist(mu=gamma, beta=s)
y_obs = pm.Censored("Censored_likelihood", latent, upper=right_censored, observed=logtime)
```

```{code-cell} ipython3
with model_3:
# Change init to avoid divergences
data_3 = pm.sample(init="adapt_diag")
idata_param3 = pm.sample(tune=4000, draws=2000, nuts_sampler="numpyro", random_seed=rng)
```

```{code-cell} ipython3
az.plot_trace(data_3)
az.plot_trace(idata_param3)
```

```{code-cell} ipython3
az.summary(data_3, round_to=2)
az.summary(idata_param3, round_to=2)
```

## Authors

- Originally collated by [Junpeng Lao](https://junpenglao.xyz/) on Apr 21, 2018. See original code [here](https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/65447fdb431c78b15fbeaef51b8c059f46c9e8d6/PyMC3QnA/discourse_1107.ipynb).
- Authored and ported to Jupyter notebook by [George Ho](https://eigenfoo.xyz/) on Jul 15, 2018.
- Updated for compatibility with PyMC v5 by Chris Fonnesbeck on Jan 16, 2023.
- Updated to replace `pm.Potential` with `pm.Censored` by Jonathan Dekermanjian on Nov 25, 2024.

```{code-cell} ipython3
%load_ext watermark
Expand Down

0 comments on commit 8c241cb

Please sign in to comment.