Skip to content

Commit

Permalink
Merge pull request #51 from fidelity/fix-tests
Browse files Browse the repository at this point in the history
  • Loading branch information
AshishPvjs authored Sep 4, 2024
2 parents c8f4daa + 6269a5a commit b050843
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 3 deletions.
7 changes: 7 additions & 0 deletions CHANGELOG.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,13 @@
CHANGELOG
=========

-------------------------------------------------------------------------------
September, 03, 2024 1.3.1
-------------------------------------------------------------------------------
Minor:
- Updated requirements to use mabwiser>=2.7.4 to reflect change from np.Inf to np.inf in mabwiser.
- Fixed default KMeans n_init parameters in tests instead of using 'auto' used in scikit-learn>=1.4

-------------------------------------------------------------------------------
February, 22, 2024 1.3.0
-------------------------------------------------------------------------------
Expand Down
2 changes: 1 addition & 1 deletion mab2rec/_version.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,5 @@

__author__ = "FMR LLC"
__email__ = "[email protected]"
__version__ = "1.3.0"
__version__ = "1.3.1"
__copyright__ = "Copyright (C), FMR LLC"
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,5 @@ scikit-learn>=0.24.0
scipy
matplotlib
seaborn>=0.1.0
mabwiser>=2.7.0
mabwiser>=2.7.4
jurity>=1.3.2
2 changes: 1 addition & 1 deletion tests/test_visualization.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ def test_plot_num_items_per_recommendation(self, mock_show):
def test_plot_personalization_heatmap(self, mock_show):
# Create clusters based on user features
X = user_features_df.iloc[:, 1:]
kmeans = KMeans(n_clusters=5, random_state=1652)
kmeans = KMeans(n_clusters=5, n_init=10, random_state=1652)
kmeans.fit(X)
user_clusters = dict(zip(user_features_df['user_id'], kmeans.labels_))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
Expand Down

0 comments on commit b050843

Please sign in to comment.