Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Diana Marculescu
⚡8-bit quantization (W8A8) for mamba blocks 🚀1.7
- NVIDIA GPU Ampere architecture or above
- CUDA 12.1 or above
- CMAKE version 3.22.1 or above
- Clone the repository with all submodules:
git clone --recurse-submodules [email protected]:enyac-group/Quamba.git
- Run in docker (optional)
To build the docker image with customized kernels, run the following commands:
cd docker
./build_docker.sh
./run.sh # launch the container
Or Pull the pre-built docker image by
docker image pull hychiang/quamba-cuda-12.1:latest
- Create Quamba conda environment
cd Quamba
conda create -n quamba python=3.10
conda activate quamba
pip install -r requirements.txt
- Install
fast-hadamard-transform
:
# set force build to include 12N, 40N from the newer commit
export FAST_HADAMARD_TRANSFORM_FORCE_BUILD=TRUE
pip install 3rdparty/fast-hadamard-transform
- Install
lm-evaluation-harness
:
# lm_eval-0.4.2 word2number-1.1
pip install 3rdparty/lm-evaluation-harness
- Install mamba
# set force build to use the commit for Quamba
export MAMBA_FORCE_BUILD=TRUE
pip install 3rdparty/mamba
- Install CUTLASS
# cmake version >= 3.22.1
bash build_cutlass.sh
pip install .
To generate the sentence from Mamba (FP16) given an input prompt:
python generate.py state-spaces/mamba-130m --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.7 --repetition_penalty 1.2
To generate the sentence from Qamba (Int8) given an input prompt:
python generate.py state-spaces/mamba-130m --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.7 --repetition_penalty 1.2 --quantize --act_scales_cache mamba-130m_scales.pt
To chat with Mamba (FP16), use the command:
python chat.py --cache_graph
To chat with Quamba (Int8), use the command:
python chat.py --cache_graph --act_scales_cache mamba-2.8b_scales_chat.pt --quantize
- To profile time-to-first-token (prefilling stage):
python profile_mamba.py state-spaces/mamba-2.8b --act_scales_cache mamba-2.8b_scales.pt --prompt_len 512 --ttft
- To profile time-per-output-token (generation stage):
python profile_mamba.py state-spaces/mamba-2.8b --act_scales_cache mamba-2.8b_scales.pt --tpot
- To profile time-to-last-token (prefilling + generation stage):
python profile_mamba.py state-spaces/mamba-2.8b --act_scales_cache mamba-2.8b_scales.pt --prompt_len 512 --gen_len 512 --ttlt
- To profile memory usage (prefilling + generation stage):
python profile_mamba.py state-spaces/mamba-2.8b --act_scales_cache mamba-2.8b_scales.pt --prompt_len 512 --gen_len 512 --size
To evaluate the simulated quantization:
python main.py state-spaces/mamba-130m fake \
--do_hadamard \
--do_percentile_u \
--batch_size 16 \
--task_list lambada_openai \
--eval_zero_shot \
--log_dir logs
To evaluate the end-to-end quantization:
python main.py state-spaces/mamba-130m real \
--act_scales_cache mamba-130m_scales.pt \
--batch_size 1 \
--task_list lambada_openai \
--eval_zero_shot \
--log_dir logs
@article{chiang2024quamba,
title={Quamba: A Post-Training Quantization Recipe for Selective State Space Models},
author={Chiang, Hung-Yueh and Chang, Chi-Chih and Frumkin, Natalia and Wu, Kai-Chiang and Marculescu, Diana},
journal={arXiv preprint arXiv:2410.13229},
year={2024}
}