Contains the code and configuration files necessary to reproduce a global analysis of landslide-triggering hydrologic conditions. This analysis will be published in the journal NHESS.
This analysis uses the following data with no preprocessing:
- The NASA Global Landslide Catalog
- Kirschbaum, D.B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A. (2010), A global landslide catalog for hazard applications: method, results, and limitations. Natural Hazards, 52,561-575. doi: 1007/s11069-009-9401-4.
- Data accessed from Global Landslide Catalog Downloadable Products Gallery
- Data should be placed in
00-data
>raw
>GLC20201204.csv
to run the02-analysis
>glc.Rmd
notebook without modifications
This analysis uses the following data preprocessed to extract values at landslide locations and calculat precipitation percentile:
- MODIS Burned Area (Global, 2004-2019)
- Giglio, L., Justice, C., Boschetti, L., Roy, D. (2015). MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2019-12-04 from https://doi.org/10.5067/MODIS/MCD64A1.006
- Data accessed from OPeNDAP
- CHIRPS Precipitation
- Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., and Verdin, A.P., 2014, A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4 p. ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/docs/USGS-DS832.CHIRPS.pdf
- Data accessed from the University of California Santa Barbara
- Daymet Daily Surface Weather Data Precipitation and Snow Water Equivalent (SWE)
- Thornton, M.M., R. Shrestha, Y. Wei, P.E. Thornton, S-C. Kao, and B.E. Wilson. 2022. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2129
- Data accessed from the Oak Ridge National Laboratory DAAC
The preprocessed dataset are available from zenodo and should be placed in 00-data
> processed
to runthe 02-analysis
> glc.Rmd
notebook without modifications
Some preprocessing steps are performed using the land-surface-modeling-utilities package using configuration files in 01-preprocessing/cfg
:
- Mosaicing, reprojecting, and converting MODIS Burned Area data to netCDF format
- Downloading Daymet data over THREDDS
Additional pre-processing was performed using command line utilities cdo
, ncrcat
, and ncks
. Instructions are included in 01-preprocessing/bash-instructions
:
- Clipping, concatenating, and calculating percentiles of CHIRPS data
Python scripts may be run in a docker container duplicated using the supplied Dockerfile
and environment.yml
. Example run scripts are provided in 01-preprocessing/bin
:
burn_global.py
determines if a fire has occurred nearby the landslide siteprecip_dayment.py
andprecip_global.py
files determine the timeline of antecedent precipitation for various datasetsprecip_frequency.py
calculates a rolling window of precipitation frequencyswe_dayment.py
determines the timeline of antecedent SWE at landslide sitesprecip_global_monthly.py
determines precipitation climatology at landslide sites
Further analysis of the preprocessed data is performed using an RMarkdown file available at 02-analysis/glc.Rmd
. 02-analysis/glc.html
contains the knitted analysis.
This analysis uses the following software:
- Becker OScbRA, Minka ARWRvbRBEbTP, Deckmyn. A (2021). maps: Draw Geographical Maps. R package version 3.4.0, <URL: https://CRAN.R-project.org/package=maps>.
- Bengtsson H (2021). “A Unifying Framework for Parallel and Distributed Processing in R using Futures.” The R Journal, 13(2), 208-227. doi: 10.32614/RJ-2021-048 (URL: https://doi.org/10.32614/RJ-2021-048), <URL: https://doi.org/10.32614/RJ-2021-048>.
- Grolemund G, Wickham H (2011). “Dates and Times Made Easy with lubridate.” Journal of Statistical Software, 40(3), 1-25. <URL: https://www.jstatsoft.org/v40/i03/>.
- Henry L, Wickham H (2020). purrr: Functional Programming Tools. R package version 0.3.4, <URL: https://CRAN.R-project.org/package=purrr>.
- Hoyer, S. & Hamman, J., (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal of Open Research Software. 5(1), p.10. DOI: https://doi.org/10.5334/jors.148
- Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2022). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.3 - For new features, see the 'Changelog' file (in the package source), <URL: https://CRAN.R-project.org/package=cluster>.
- Makowski D, Lüdecke D, Patil I, Thériault R (2023). “Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption.” CRAN. <URL: https://easystats.github.io/report/>.
- McKinney, W., & others. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56).
- Müller K, Wickham H (2021). tibble: Simple Data Frames. R package version 3.1.5, <URL: https://CRAN.R-project.org/package=tibble>.
- Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, <URL: https://CRAN.R-project.org/package=RColorBrewer>.
- Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 (URL: https://doi.org/10.32614/RJ-2018-009), <URL: https://doi.org/10.32614/RJ-2018-009>.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <URL: https://www.R-project.org/>.
- Robinson D, Hayes A, Couch S (2021). broom: Convert Statistical Objects into Tidy Tibbles. R package version 0.7.9, <URL: https://CRAN.R-project.org/package=broom>.
- Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.
- Vaughan D, Dancho M (2022). furrr: Apply Mapping Functions in Parallel using Futures. R package version 0.3.1, <URL: https://CRAN.R-project.org/package=furrr>.
- Walker K (2022). tigris: Load Census TIGER/Line Shapefiles. R package version 1.6.1, <URL: https://CRAN.R-project.org/package=tigris>.
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, <URL: https://ggplot2.tidyverse.org>.
- Wickham H (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0, <URL: https://CRAN.R-project.org/package=stringr>.
- Wickham H (2021). forcats: Tools for Working with Categorical Variables (Factors). R package version 0.5.1, <URL: https://CRAN.R-project.org/package=forcats>.
- Wickham H (2021). tidyr: Tidy Messy Data. R package version 1.1.4, <URL: https://CRAN.R-project.org/package=tidyr>.
- Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi: 10.21105/joss.01686 (URL: https://doi.org/10.21105/joss.01686).
- Wickham H, François R, Henry L, Müller K (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7, <URL: https://CRAN.R-project.org/package=dplyr>.
- Wickham H, Hester J (2021). readr: Read Rectangular Text Data. R package version 2.0.2, <URL: https://CRAN.R-project.org/package=readr>.
- Wickham H, Pedersen T (2019). gtable: Arrange 'Grobs' in Tables. R package version 0.3.0, <URL: https://CRAN.R-project.org/package=gtable>.
- Wickham H, Seidel D (2020). scales: Scale Functions for Visualization. R package version 1.1.1, <URL: https://CRAN.R-project.org/package=scales>.
- Wilke C (2020). cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 1.1.1, <URL: https://CRAN.R-project.org/package=cowplot>.
- Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time Series.” Journal of Statistical Software, 14(6), 1-27. doi: 10.18637/jss.v014.i06 (URL: https://doi.org/10.18637/jss.v014.i06).