This repository has been archived by the owner on Dec 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branches 'docs/populate-docstrings' and 'docs/populate-docstrin…
…gs' of https://github.com/ecmwf/anemoi-models into docs/populate-docstrings
- Loading branch information
Showing
47 changed files
with
2,869 additions
and
174 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# (C) Copyright 2024 ECMWF. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
# | ||
|
||
import operator | ||
|
||
import yaml | ||
from omegaconf import OmegaConf | ||
|
||
from anemoi.models.data_indices.index import BaseIndex | ||
from anemoi.models.data_indices.index import DataIndex | ||
from anemoi.models.data_indices.index import ModelIndex | ||
from anemoi.models.data_indices.tensor import BaseTensorIndex | ||
from anemoi.models.data_indices.tensor import InputTensorIndex | ||
from anemoi.models.data_indices.tensor import OutputTensorIndex | ||
|
||
|
||
class IndexCollection: | ||
"""Collection of data and model indices.""" | ||
|
||
def __init__(self, config, name_to_index) -> None: | ||
self.config = OmegaConf.to_container(config, resolve=True) | ||
|
||
self.forcing = [] if config.data.forcing is None else OmegaConf.to_container(config.data.forcing, resolve=True) | ||
self.diagnostic = ( | ||
[] if config.data.diagnostic is None else OmegaConf.to_container(config.data.diagnostic, resolve=True) | ||
) | ||
|
||
assert set(self.diagnostic).isdisjoint(self.forcing), ( | ||
f"Diagnostic and forcing variables overlap: {set(self.diagnostic).intersection(self.forcing)}. ", | ||
"Please drop them at a dataset-level to exclude them from the training data.", | ||
) | ||
self.name_to_index = dict(sorted(name_to_index.items(), key=operator.itemgetter(1))) | ||
name_to_index_model_input = { | ||
name: i for i, name in enumerate(key for key in self.name_to_index if key not in self.diagnostic) | ||
} | ||
name_to_index_model_output = { | ||
name: i for i, name in enumerate(key for key in self.name_to_index if key not in self.forcing) | ||
} | ||
|
||
self.data = DataIndex(self.diagnostic, self.forcing, self.name_to_index) | ||
self.model = ModelIndex(self.diagnostic, self.forcing, name_to_index_model_input, name_to_index_model_output) | ||
|
||
def __repr__(self) -> str: | ||
return f"IndexCollection(config={self.config}, name_to_index={self.name_to_index})" | ||
|
||
def __eq__(self, other): | ||
if not isinstance(other, IndexCollection): | ||
# don't attempt to compare against unrelated types | ||
return NotImplemented | ||
|
||
return self.model == other.model and self.data == other.data | ||
|
||
def __getitem__(self, key): | ||
return getattr(self, key) | ||
|
||
def todict(self): | ||
return { | ||
"data": self.data.todict(), | ||
"model": self.model.todict(), | ||
} | ||
|
||
@staticmethod | ||
def representer(dumper, data): | ||
return dumper.represent_scalar(f"!{data.__class__.__name__}", repr(data)) | ||
|
||
|
||
for cls in [BaseTensorIndex, InputTensorIndex, OutputTensorIndex, BaseIndex, DataIndex, ModelIndex, IndexCollection]: | ||
yaml.add_representer(cls, cls.representer) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# (C) Copyright 2024 ECMWF. | ||
# | ||
# This software is licensed under the terms of the Apache Licence Version 2.0 | ||
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. | ||
# In applying this licence, ECMWF does not waive the privileges and immunities | ||
# granted to it by virtue of its status as an intergovernmental organisation | ||
# nor does it submit to any jurisdiction. | ||
# | ||
|
||
from anemoi.models.data_indices.tensor import InputTensorIndex | ||
from anemoi.models.data_indices.tensor import OutputTensorIndex | ||
|
||
|
||
class BaseIndex: | ||
"""Base class for data and model indices.""" | ||
|
||
def __init__(self) -> None: | ||
self.input = NotImplementedError | ||
self.output = NotImplementedError | ||
|
||
def __eq__(self, other): | ||
if not isinstance(other, BaseIndex): | ||
# don't attempt to compare against unrelated types | ||
return NotImplemented | ||
|
||
return self.input == other.input and self.output == other.output | ||
|
||
def __repr__(self) -> str: | ||
return f"{self.__class__.__name__}(input={self.input}, output={self.output})" | ||
|
||
def __getitem__(self, key): | ||
return getattr(self, key) | ||
|
||
def todict(self): | ||
return { | ||
"input": self.input.todict(), | ||
"output": self.output.todict(), | ||
} | ||
|
||
@staticmethod | ||
def representer(dumper, data): | ||
return dumper.represent_scalar(f"!{data.__class__.__name__}", repr(data)) | ||
|
||
|
||
class DataIndex(BaseIndex): | ||
"""Indexing for data variables.""" | ||
|
||
def __init__(self, diagnostic, forcing, name_to_index) -> None: | ||
self._diagnostic = diagnostic | ||
self._forcing = forcing | ||
self._name_to_index = name_to_index | ||
self.input = InputTensorIndex( | ||
includes=forcing, | ||
excludes=diagnostic, | ||
name_to_index=name_to_index, | ||
) | ||
|
||
self.output = OutputTensorIndex( | ||
includes=diagnostic, | ||
excludes=forcing, | ||
name_to_index=name_to_index, | ||
) | ||
|
||
def __repr__(self) -> str: | ||
return f"{self.__class__.__name__}(diagnostic={self._input}, forcing={self._output}, name_to_index={self._name_to_index})" | ||
|
||
|
||
class ModelIndex(BaseIndex): | ||
"""Indexing for model variables.""" | ||
|
||
def __init__(self, diagnostic, forcing, name_to_index_model_input, name_to_index_model_output) -> None: | ||
self._diagnostic = diagnostic | ||
self._forcing = forcing | ||
self._name_to_index_model_input = name_to_index_model_input | ||
self._name_to_index_model_output = name_to_index_model_output | ||
self.input = InputTensorIndex( | ||
includes=forcing, | ||
excludes=[], | ||
name_to_index=name_to_index_model_input, | ||
) | ||
|
||
self.output = OutputTensorIndex( | ||
includes=diagnostic, | ||
excludes=[], | ||
name_to_index=name_to_index_model_output, | ||
) | ||
|
||
def __repr__(self) -> str: | ||
return ( | ||
f"{self.__class__.__name__}(diagnostic={self._input}, forcing={self._output}, " | ||
f"name_to_index_model_input={self._name_to_index_model_input}, " | ||
f"name_to_index_model_output={self._name_to_index_model_output})" | ||
) |
Oops, something went wrong.