Skip to content

100% Julia implementation of the dplyr and tidyr R packages

License

Notifications You must be signed in to change notification settings

drizk1/TidierData.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TidierData.jl

License: MIT Docs: Latest Build Status

What is TidierData.jl?

TidierData.jl is a 100% Julia implementation of the dplyr and tidyr R packages. Powered by the DataFrames.jl package and Julia’s extensive meta-programming capabilities, TidierData.jl is an R user’s love letter to data analysis in Julia.

TidierData.jl has two goals, which differentiate it from other data analysis meta-packages in Julia:

  1. Stick as closely to dplyr and tidyr syntax as possible: Whereas other meta-packages introduce Julia-centric idioms for working with DataFrames, this package’s goal is to reimplement dplyr and tidyr in Julia. This means that TidierData.jl uses tidy expressions as opposed to idiomatic Julia expressions. An example of a tidy expression is a = mean(b).

  2. Make broadcasting mostly invisible: Broadcasting trips up many R users switching to Julia because R users are used to most functions being vectorized. TidierData.jl currently uses a lookup table to decide which functions not to vectorize; all other functions are automatically vectorized. Read the documentation page on "Autovectorization" to read about how this works, and how to override the defaults.

Installation

For the stable version:

] add TidierData

The ] character starts the Julia package manager. Press the backspace key to return to the Julia prompt.

or

using Pkg
Pkg.add("TidierData")

For the newest version:

] add TidierData#main

or

using Pkg
Pkg.add(url="https://github.com/TidierOrg/TidierData.jl")

What functions does TidierData.jl support?

To support R-style programming, TidierData.jl is implemented using macros.

TidierData.jl currently supports the following top-level macros:

  • @glimpse()
  • @select() and @distinct()
  • @rename() and @rename_with()
  • @mutate() and @transmute()
  • @summarize() and @summarise()
  • @filter()
  • @slice(), @slice_sample(), @slice_min(), @slice_max(), @slice_head(), and @slice_tail()
  • @group_by() and @ungroup()
  • @arrange()
  • @relocate()
  • @pull()
  • @count() and @tally()
  • @left_join(), @right_join(), @inner_join(), @full_join(), @anti_join(), and @semi_join()
  • @bind_rows() and @bind_cols()
  • @pivot_wider() and @pivot_longer()
  • @separate(), @separate_rows(), and @unite()
  • @drop_missing() and @fill_missing()
  • @unnest_longer(), @unnest_wider(), and @nest()
  • @clean_names() (as in R's janitor::clean_names() function)
  • @summary() (as in R's summary() function)

TidierData.jl also supports the following helper functions:

  • across()
  • where()
  • desc()
  • if_else() and case_when()
  • n() and row_number()
  • ntile()
  • lag() and lead()
  • everything(), starts_with(), ends_with(), matches(), and contains()
  • as_float(), as_integer(), and as_string()
  • is_number(), is_float(), is_integer(), and is_string()
  • missing_if() and replace_missing()

See the documentation Home page for a guide on how to get started, or the Reference page for a detailed guide to each of the macros and functions.

Example

Let's select the first five movies in our dataset whose budget exceeds the mean budget. Unlike in R, where we pass an na.rm = TRUE argument to remove missing values, in Julia we wrap the variable with a skipmissing() to remove the missing values before the mean() is calculated.

using TidierData
using RDatasets

movies = dataset("ggplot2", "movies");

@chain movies begin
    @mutate(Budget = Budget / 1_000_000)
    @filter(Budget >= mean(skipmissing(Budget)))
    @select(Title, Budget)
    @slice(1:5)
end
5×2 DataFrame
 Row │ Title                       Budget   
     │ String                      Float64? 
─────┼──────────────────────────────────────
   1 │ 'Til There Was You              23.0
   2 │ 10 Things I Hate About You      16.0
   3 │ 102 Dalmatians                  85.0
   4 │ 13 Going On 30                  37.0
   5 │ 13th Warrior, The               85.0

What’s new

See NEWS.md for the latest updates.

What's missing

Is there a tidyverse feature missing that you would like to see in TidierData.jl? Please file a GitHub issue. Because TidierData.jl primarily wraps DataFrames.jl, our decision to integrate a new feature will be guided by how well-supported it is within DataFrames.jl and how likely other users are to benefit from it.

About

100% Julia implementation of the dplyr and tidyr R packages

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%