A Python implementation of of the scTransform method
Based on the R package sctransform originally by Christoph Hafemeister
Currently this supports basic functionality - variance stabilizing transform of UMI count data based on a general linear model and kernel-regularized parameters.
pip install git+https://github.com/deto/scTransformPy.git
import scTransform
residuals = scTransform.vst(
umi, latent_var=['log_umi'], cell_attr
)
Supported:
- cell_attr
- latent_var
Unsupported:
- batch variables (batch_var)
- non-regularized latent variables (latent_var_nonreg)
- gene sub-sampling (n_genes)
- cell sub-sampling (n_cells)
- alternate GLM fitting procedures (only the default, method="poisson" supported)
- sparse input umi matrix