-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updated gradient checkpoint for training resnet2060
- Loading branch information
1 parent
676b02d
commit f7007b6
Showing
5 changed files
with
189 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import torch | ||
from torch import nn | ||
|
||
assert torch.__version__ >= "1.8.1" | ||
from torch.utils.checkpoint import checkpoint_sequential | ||
|
||
__all__ = ['iresnet2060'] | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | ||
"""3x3 convolution with padding""" | ||
return nn.Conv2d(in_planes, | ||
out_planes, | ||
kernel_size=3, | ||
stride=stride, | ||
padding=dilation, | ||
groups=groups, | ||
bias=False, | ||
dilation=dilation) | ||
|
||
|
||
def conv1x1(in_planes, out_planes, stride=1): | ||
"""1x1 convolution""" | ||
return nn.Conv2d(in_planes, | ||
out_planes, | ||
kernel_size=1, | ||
stride=stride, | ||
bias=False) | ||
|
||
|
||
class IBasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None, | ||
groups=1, base_width=64, dilation=1): | ||
super(IBasicBlock, self).__init__() | ||
if groups != 1 or base_width != 64: | ||
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | ||
if dilation > 1: | ||
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | ||
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, ) | ||
self.conv1 = conv3x3(inplanes, planes) | ||
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, ) | ||
self.prelu = nn.PReLU(planes) | ||
self.conv2 = conv3x3(planes, planes, stride) | ||
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, ) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
identity = x | ||
out = self.bn1(x) | ||
out = self.conv1(out) | ||
out = self.bn2(out) | ||
out = self.prelu(out) | ||
out = self.conv2(out) | ||
out = self.bn3(out) | ||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
out += identity | ||
return out | ||
|
||
|
||
class IResNet(nn.Module): | ||
fc_scale = 7 * 7 | ||
|
||
def __init__(self, | ||
block, layers, dropout=0, num_features=512, zero_init_residual=False, | ||
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): | ||
super(IResNet, self).__init__() | ||
self.fp16 = fp16 | ||
self.inplanes = 64 | ||
self.dilation = 1 | ||
if replace_stride_with_dilation is None: | ||
replace_stride_with_dilation = [False, False, False] | ||
if len(replace_stride_with_dilation) != 3: | ||
raise ValueError("replace_stride_with_dilation should be None " | ||
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | ||
self.groups = groups | ||
self.base_width = width_per_group | ||
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) | ||
self.prelu = nn.PReLU(self.inplanes) | ||
self.layer1 = self._make_layer(block, 64, layers[0], stride=2) | ||
self.layer2 = self._make_layer(block, | ||
128, | ||
layers[1], | ||
stride=2, | ||
dilate=replace_stride_with_dilation[0]) | ||
self.layer3 = self._make_layer(block, | ||
256, | ||
layers[2], | ||
stride=2, | ||
dilate=replace_stride_with_dilation[1]) | ||
self.layer4 = self._make_layer(block, | ||
512, | ||
layers[3], | ||
stride=2, | ||
dilate=replace_stride_with_dilation[2]) | ||
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, ) | ||
self.dropout = nn.Dropout(p=dropout, inplace=True) | ||
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) | ||
self.features = nn.BatchNorm1d(num_features, eps=1e-05) | ||
nn.init.constant_(self.features.weight, 1.0) | ||
self.features.weight.requires_grad = False | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.normal_(m.weight, 0, 0.1) | ||
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | ||
nn.init.constant_(m.weight, 1) | ||
nn.init.constant_(m.bias, 0) | ||
|
||
if zero_init_residual: | ||
for m in self.modules(): | ||
if isinstance(m, IBasicBlock): | ||
nn.init.constant_(m.bn2.weight, 0) | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): | ||
downsample = None | ||
previous_dilation = self.dilation | ||
if dilate: | ||
self.dilation *= stride | ||
stride = 1 | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
conv1x1(self.inplanes, planes * block.expansion, stride), | ||
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), | ||
) | ||
layers = [] | ||
layers.append( | ||
block(self.inplanes, planes, stride, downsample, self.groups, | ||
self.base_width, previous_dilation)) | ||
self.inplanes = planes * block.expansion | ||
for _ in range(1, blocks): | ||
layers.append( | ||
block(self.inplanes, | ||
planes, | ||
groups=self.groups, | ||
base_width=self.base_width, | ||
dilation=self.dilation)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def checkpoint(self, func, num_seg, x): | ||
if self.training: | ||
return checkpoint_sequential(func, num_seg, x) | ||
else: | ||
return func(x) | ||
|
||
def forward(self, x): | ||
with torch.cuda.amp.autocast(self.fp16): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.prelu(x) | ||
x = self.layer1(x) | ||
x = self.checkpoint(self.layer2, 20, x) | ||
x = self.checkpoint(self.layer3, 100, x) | ||
x = self.layer4(x) | ||
x = self.bn2(x) | ||
x = torch.flatten(x, 1) | ||
x = self.dropout(x) | ||
x = self.fc(x.float() if self.fp16 else x) | ||
x = self.features(x) | ||
return x | ||
|
||
|
||
def _iresnet(arch, block, layers, pretrained, progress, **kwargs): | ||
model = IResNet(block, layers, **kwargs) | ||
if pretrained: | ||
raise ValueError() | ||
return model | ||
|
||
|
||
def iresnet2060(pretrained=False, progress=True, **kwargs): | ||
return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters