-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0fed7bf
commit a84ee72
Showing
4 changed files
with
298 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# -*- coding: utf-8 -*- | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# ===================================================================================== | ||
from typing import Tuple | ||
from typing import Union | ||
|
||
import torch | ||
from torch import nn | ||
|
||
|
||
class LipResidual(nn.Module): | ||
""" | ||
This class is a 1-Lipschitz residual connection | ||
With a learnable parameter alpha that give a tradeoff | ||
between the x and the layer y=l(x) | ||
Args: | ||
""" | ||
def __init__(self): | ||
super().__init__() | ||
self.alpha = nn.Parameter(torch.tensor(0.0), requires_grad=True) | ||
|
||
def forward(self, x, y): | ||
alpha = torch.sigmoid(self.alpha) | ||
return alpha * x + (1 - alpha) * y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# -*- coding: utf-8 -*- | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
# Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All | ||
# rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry, | ||
# CRIAQ and ANITI - https://www.deel.ai/ | ||
# ===================================================================================== | ||
import os | ||
import pytest | ||
|
||
import numpy as np | ||
|
||
from . import utils_framework as uft | ||
|
||
from .utils_framework import LipResidual | ||
from .utils_framework import tInput, tSplit, tModel | ||
|
||
|
||
def get_functional_tensors(input_shape): | ||
dict_functional_tensors = {} | ||
dict_functional_tensors["inputs"] = uft.get_instance_framework( | ||
tInput, {"shape": input_shape} | ||
) | ||
dict_functional_tensors["split"] = uft.get_instance_framework( | ||
tSplit, {"chunks": 2, "dim": 1} | ||
) | ||
dict_functional_tensors["residual"] = uft.get_instance_framework(LipResidual, {}) | ||
return dict_functional_tensors | ||
|
||
|
||
def functional_input_output_tensors(dict_functional_tensors, x): | ||
"""Return input and output tensor of a Functional (hard-coded) model""" | ||
if dict_functional_tensors["inputs"] is None: | ||
inputs = x | ||
else: | ||
inputs = dict_functional_tensors["inputs"] | ||
x = dict_functional_tensors["split"](inputs) | ||
outputs = dict_functional_tensors["residual"](x[0], x[1]) | ||
if dict_functional_tensors["inputs"] is None: | ||
return outputs | ||
else: | ||
return inputs, outputs | ||
# return x | ||
|
||
|
||
def check_serialization(layer_type, layer_params, input_shape=(10,)): | ||
|
||
dict_tensors = get_functional_tensors(input_shape) | ||
m = uft.get_functional_model(tModel, dict_tensors, functional_input_output_tensors) | ||
if m is None: | ||
pytest.skip() | ||
loss, optimizer, _ = uft.compile_model( | ||
m, | ||
optimizer=uft.get_instance_framework(uft.SGD, inst_params={"model": m}), | ||
loss=uft.MeanSquaredError(), | ||
) | ||
name = layer_type.__class__.__name__ | ||
path = os.path.join("logs", "residual", name) | ||
xnp = np.random.uniform(-10, 10, (255,) + input_shape) | ||
x = uft.to_tensor(xnp) | ||
y1 = m(x) | ||
uft.save_model(m, path) | ||
|
||
# build and generate the model | ||
if uft.vanilla_require_a_copy(): | ||
dict_tensors2 = get_functional_tensors(input_shape) | ||
m2 = uft.get_functional_model( | ||
tModel, dict_tensors2, functional_input_output_tensors | ||
) | ||
m2 = uft.load_state_dict(path, m2) | ||
else: | ||
m2 = uft.load_model( | ||
path, | ||
compile=True, | ||
layer_type=layer_type, | ||
layer_params=layer_params, | ||
input_shape=input_shape, | ||
k=1, | ||
) | ||
y2 = m2(x) | ||
np.testing.assert_allclose(uft.to_numpy(y1), uft.to_numpy(y2)) | ||
|
||
|
||
@pytest.mark.skipif( | ||
hasattr(LipResidual, "unavailable_class"), | ||
reason="LipResidual not available", | ||
) | ||
@pytest.mark.parametrize( | ||
"input_shape", | ||
[ | ||
(3, 4, 8, 8), | ||
], | ||
) | ||
def test_initLipResidual(input_shape): | ||
"""evaluate layerbatch centering""" | ||
input_shape = uft.to_framework_channel(input_shape) | ||
x1 = np.arange(np.prod(input_shape)).reshape(input_shape) | ||
x2 = np.zeros(input_shape) | ||
res = uft.get_instance_framework(LipResidual, {}) | ||
|
||
alpha_res = uft.to_numpy(res.alpha) | ||
assert alpha_res == 0.0 | ||
z = res(uft.to_tensor(x1), uft.to_tensor(x1)) | ||
np.testing.assert_allclose(uft.to_numpy(z), x1, atol=1e-5) | ||
z = res(uft.to_tensor(x1), uft.to_tensor(x2)) | ||
np.testing.assert_allclose(uft.to_numpy(z), x1 / 2.0, atol=1e-5) | ||
|
||
|
||
@pytest.mark.skipif( | ||
hasattr(LipResidual, "unavailable_class"), | ||
reason="LipResidual not available", | ||
) | ||
@pytest.mark.parametrize( | ||
"input_shape", | ||
[ | ||
(14, 8, 8), | ||
], | ||
) | ||
def test_Normalization_serialization(input_shape): | ||
# Check serialization | ||
check_serialization(LipResidual, layer_params={}, input_shape=input_shape) | ||
|
||
|
||
def linear_generator(batch_size, input_shape: tuple, input_type: str): | ||
""" | ||
Generate data according to a linear kernel | ||
Args: | ||
batch_size: size of each batch | ||
input_shape: shape of the desired input | ||
input_type: duplication type for residual | ||
Returns: | ||
a generator for the data | ||
""" | ||
input_shape = tuple( | ||
[sh // 2 if id == 0 else sh for id, sh in enumerate(input_shape)] | ||
) | ||
while True: | ||
# pick random sample in [0, 1] with the input shape | ||
batch_x = np.array( | ||
np.random.uniform(-10, 10, (batch_size,) + input_shape), dtype=np.float16 | ||
) | ||
# same output as input | ||
batch_y = batch_x | ||
# concatenate to use split | ||
if input_type == "zeros": | ||
batch_x = np.concatenate([batch_x, np.zeros_like(batch_x)], axis=1) | ||
if input_type == "invert": | ||
batch_x = np.concatenate([np.zeros_like(batch_x), batch_x], axis=1) | ||
if input_type == "copy": | ||
batch_x = np.concatenate([batch_x, batch_x], axis=1) | ||
if input_type == "random": | ||
batch_x = np.concatenate( | ||
[ | ||
batch_x, | ||
np.array( | ||
np.random.uniform(-10, 10, (batch_size,) + input_shape), | ||
dtype=np.float16, | ||
), | ||
], | ||
axis=1, | ||
) | ||
yield batch_x, batch_y | ||
|
||
|
||
def sigmoid(z): | ||
return 1 / (1 + np.exp(-z)) | ||
|
||
|
||
@pytest.mark.skipif( | ||
hasattr(LipResidual, "unavailable_class"), | ||
reason="LipResidual not available", | ||
) | ||
@pytest.mark.parametrize( | ||
"input_shape, input_type, learnt_alpha", | ||
[ | ||
((14, 8, 8), "zeros", 1.0), # x1=x x2=0 | ||
((14, 8, 8), "copy", 0.5), # x1=x2=x | ||
((14, 8, 8), "invert", 0.0), # x1=0 x2=x | ||
((14, 8, 8), "random", None), # x1=x1 x2=x2 | ||
], | ||
) | ||
def test_learntResidual(input_shape, input_type, learnt_alpha): | ||
dict_tensors = get_functional_tensors(input_shape) | ||
m = uft.get_functional_model(tModel, dict_tensors, functional_input_output_tensors) | ||
if m is None: | ||
pytest.skip() | ||
loss, optimizer, _ = uft.compile_model( | ||
m, | ||
optimizer=uft.get_instance_framework(uft.SGD, inst_params={"model": m}), | ||
loss=uft.MeanSquaredError(), | ||
) | ||
batch_size = 10 | ||
|
||
traind_ds = linear_generator(batch_size, input_shape, input_type) | ||
uft.train( | ||
traind_ds, | ||
m, | ||
loss, | ||
optimizer, | ||
5, | ||
batch_size, | ||
steps_per_epoch=100, | ||
) | ||
|
||
alpha = uft.to_numpy(m.get_module_by_name("residual").alpha) | ||
if learnt_alpha is not None: | ||
np.testing.assert_allclose(sigmoid(alpha), learnt_alpha, atol=1e-1) | ||
else: | ||
assert alpha != 0.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters