Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ch1.2.md #124

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/ch01/ch1.2.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@
近线层的主要特点是准实时,它可以获得实时数据,然后快速计算提供服务,但是并不要求它和在线层一样达到几十毫秒这种延时要求。近线层的产生是同时想要弥补离线层和在线层的不足,折中的产物。

它适合处理一些对延时比较敏感的任务,比如:
1. 特征的事实更新计算:例如统计用户对不同type的ctr,推荐系统一个老生常谈的问题就是特征分布不一致怎么办,如果使用离线算好的特征就容易出现这个问题。近线层能够获取实时数据,按照用户的实时兴趣计算就能很好避免这个问题。
1. 特征的实时更新计算:例如统计用户对不同type的ctr,推荐系统一个老生常谈的问题就是特征分布不一致怎么办,如果使用离线算好的特征就容易出现这个问题。近线层能够获取实时数据,按照用户的实时兴趣计算就能很好避免这个问题。
2. 实时训练数据的获取:比如在使用DIN、DSIN这行网络会依赖于用户的实时兴趣变化,用户几分钟前的点击就可以通过近线层获取特征输入模型。
3. 模型实时训练:可以通过在线学习的方法更新模型,实时推送到线上;

Expand Down