-
Notifications
You must be signed in to change notification settings - Fork 244
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2582 from data-for-change/compare-cbs-anyway
compare cbs anyway summary data
- Loading branch information
Showing
6 changed files
with
2,957 additions
and
0 deletions.
There are no files selected for viewing
265 changes: 265 additions & 0 deletions
265
anyway/parsers/compare_cbs_and_anyway_road_segments_accidents.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
import os | ||
import pandas as pd | ||
from tqdm import tqdm | ||
from anyway.models import AccidentMarkerView, RoadSegments, SuburbanJunction | ||
from anyway.widgets.segment_junctions import SegmentJunctions | ||
from anyway.widgets.widget_utils import ( | ||
get_expression_for_fields, | ||
get_expression_for_road_segment_location_fields, | ||
split_location_fields_and_others, | ||
) | ||
from anyway.app_and_db import db | ||
from sqlalchemy import func | ||
|
||
# Constants | ||
CBS_TYPE_1_SUMMARY_FILE = os.path.join( | ||
"static", "data", "cbs_summary_files", "2022", "t01_type_1_for_segment_test.xls" | ||
) | ||
CBS_TYPE_3_SUMMARY_FILE = os.path.join( | ||
"static", "data", "cbs_summary_files", "2022", "t03_type_3_for_segment_test.xls" | ||
) | ||
OUTPUT_DIR = os.path.join("static", "data", "cbs_summary_files", "2022", "comparison_output") | ||
OUTPUT_FILE = os.path.join(OUTPUT_DIR, "cbs_anyway_road_segments.csv") | ||
|
||
# Global dictionary for road segments | ||
ROAD_SEGMENTS_DICT = {} | ||
sg = SegmentJunctions.get_instance() | ||
|
||
|
||
def read_excel_file(file_path, skip_rows, columns, segment_col="segment"): | ||
try: | ||
df = pd.read_excel(file_path, skiprows=skip_rows) | ||
df.columns = columns | ||
df = df.loc[df[segment_col].notna() & df[segment_col].astype(str).str.isdigit()] | ||
return df | ||
except Exception as e: | ||
print(f"Error reading {file_path}: {e}") | ||
return pd.DataFrame() | ||
|
||
|
||
def get_cbs_count(): | ||
df_type_1_columns = [ | ||
"segment", | ||
"road", | ||
"from", | ||
"to", | ||
"acc_per_million_km", | ||
"total", | ||
"total_light", | ||
"total_severe", | ||
"total_fatal", | ||
"2022_total", | ||
"2022_light", | ||
"2022_severe", | ||
"2022_fatal", | ||
"2021_total", | ||
"2020_total", | ||
"avg", | ||
"length", | ||
] | ||
df_type_3_columns = [ | ||
"segment", | ||
"road", | ||
"from", | ||
"to", | ||
"acc_per_million_km", | ||
"total", | ||
"2022_total", | ||
"2021_total", | ||
"2020_total", | ||
"avg", | ||
"length", | ||
] | ||
|
||
# Read and process type 1 data | ||
df_type_1 = read_excel_file(CBS_TYPE_1_SUMMARY_FILE, 4, df_type_1_columns) | ||
if df_type_1.empty: | ||
return pd.DataFrame() | ||
df_type_1["provider_code"] = 1 | ||
df_type_1["road_segment_name_cbs"] = ( | ||
df_type_1["from"].str.slice(start=1) + " -" + df_type_1["to"].str.slice(start=2) | ||
) | ||
df_type_1_total = df_type_1[ | ||
[ | ||
"road_segment_name_cbs", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"2020_total", | ||
"2021_total", | ||
"2022_total", | ||
] | ||
].copy() | ||
df_type_1_total.columns = [ | ||
"road_segment_name_cbs", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"2020_cbs", | ||
"2021_cbs", | ||
"2022_cbs", | ||
] | ||
df_type_1_total.fillna({"2020_cbs": 0, "2021_cbs": 0, "2022_cbs": 0}, inplace=True) | ||
|
||
# Read and process type 3 data | ||
df_type_3 = read_excel_file(CBS_TYPE_3_SUMMARY_FILE, 5, df_type_3_columns) | ||
if df_type_3.empty: | ||
return df_type_1_total | ||
df_type_3["provider_code"] = 3 | ||
df_type_3["road_segment_name_cbs"] = ( | ||
df_type_3["from"].str.slice(start=1) + " - " + df_type_3["to"].str.slice(start=2) | ||
) | ||
df_type_3_total = df_type_3[ | ||
[ | ||
"road_segment_name_cbs", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"2020_total", | ||
"2021_total", | ||
"2022_total", | ||
] | ||
].copy() | ||
df_type_3_total.columns = [ | ||
"road_segment_name_cbs", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"2020_cbs", | ||
"2021_cbs", | ||
"2022_cbs", | ||
] | ||
df_type_3_total.fillna({"2020_cbs": 0, "2021_cbs": 0, "2022_cbs": 0}, inplace=True) | ||
|
||
# Combine type 1 and type 3 data | ||
df_cbs_total = pd.concat([df_type_1_total, df_type_3_total]) | ||
df_cbs_total.set_index(["road", "segment", "provider_code"], inplace=True) | ||
return df_cbs_total | ||
|
||
|
||
def get_anyway_count(): | ||
dfs = [] | ||
road_segments = RoadSegments.query.all() | ||
for road_segment in tqdm(road_segments, desc="Processing road segments"): | ||
road_segment_id = road_segment.segment_id | ||
road = road_segment.road | ||
segment = road_segment.segment | ||
road_segment_name = f"{road_segment.from_name} - {road_segment.to_name}" | ||
ROAD_SEGMENTS_DICT[road_segment_id] = road_segment_name | ||
|
||
filters = {"road_segment_id": road_segment_id, "accident_year": [2020, 2021, 2022]} | ||
query = db.session.query(AccidentMarkerView) | ||
location_fields, other_fields = split_location_fields_and_others(filters) | ||
|
||
if other_fields: | ||
query = query.filter(get_expression_for_fields(other_fields, AccidentMarkerView)) | ||
if location_fields: | ||
query = query.filter( | ||
get_expression_for_road_segment_location_fields(location_fields, AccidentMarkerView) | ||
) | ||
# use only location accuracy filters with the following Accurate (No.1), Road Center (No.3), KM Center (w/o not ancored No.9) | ||
query = query.filter(AccidentMarkerView.location_accuracy.in_([1, 3, 4])) | ||
query = query.group_by(AccidentMarkerView.provider_code, AccidentMarkerView.accident_year) | ||
query = query.with_entities( | ||
AccidentMarkerView.provider_code, | ||
AccidentMarkerView.accident_year, | ||
func.count().label("anyway_count"), | ||
) | ||
|
||
df = pd.read_sql_query(query.statement, query.session.bind) | ||
df["road_segment_id"] = road_segment_id | ||
df["road"] = road | ||
df["segment"] = segment | ||
df["road_segment_name"] = road_segment_name | ||
junctions_numbers = list(sg.get_segment_junctions(road_segment_id)) | ||
|
||
if not junctions_numbers: | ||
junctions_numbers = [] | ||
df["junctions_ids_in_segment"] = str(junctions_numbers) | ||
|
||
junctions_objects = ( | ||
db.session.query( | ||
SuburbanJunction.non_urban_intersection, | ||
SuburbanJunction.non_urban_intersection_hebrew, | ||
) | ||
.filter(SuburbanJunction.non_urban_intersection.in_(junctions_numbers)) | ||
.all() | ||
) | ||
df["junctions_names_in_segment"] = str( | ||
[j.non_urban_intersection_hebrew for j in junctions_objects] | ||
) | ||
dfs.append(df) | ||
|
||
df_all_segments = pd.concat(dfs) | ||
df_all_segments.sort_values(["road_segment_id", "provider_code", "accident_year"], inplace=True) | ||
return df_all_segments | ||
|
||
|
||
def parse(): | ||
df_anyway = get_anyway_count() | ||
df_anyway_total = ( | ||
df_anyway.groupby( | ||
[ | ||
"junctions_ids_in_segment", | ||
"junctions_names_in_segment", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"road_segment_id", | ||
"accident_year", | ||
] | ||
)["anyway_count"] | ||
.sum() | ||
.unstack(fill_value=0) | ||
.reset_index() | ||
) | ||
df_anyway_total.set_index(["road", "segment", "provider_code"], inplace=True) | ||
|
||
df_cbs_total = get_cbs_count() | ||
if df_cbs_total.empty: | ||
return | ||
|
||
df_total = pd.merge( | ||
df_cbs_total, df_anyway_total, left_index=True, right_index=True, how="outer" | ||
) | ||
df_total.reset_index(inplace=True) | ||
df_total["road_segment_name"] = df_total["road_segment_id"].map(ROAD_SEGMENTS_DICT) | ||
df_total.rename( | ||
columns={2020: "2020_anyway", 2021: "2021_anyway", 2022: "2022_anyway"}, inplace=True | ||
) | ||
df_total = df_total[ | ||
[ | ||
"road_segment_name_cbs", | ||
"road_segment_name", | ||
"road_segment_id", | ||
"road", | ||
"segment", | ||
"provider_code", | ||
"2020_cbs", | ||
"2020_anyway", | ||
"2021_cbs", | ||
"2021_anyway", | ||
"2022_cbs", | ||
"2022_anyway", | ||
"junctions_ids_in_segment", | ||
"junctions_names_in_segment", | ||
] | ||
] | ||
df_total["road_segment_name_cbs"] = df_total["road_segment_name_cbs"].str.strip() | ||
df_total["road_segment_name_cbs"] = df_total["road_segment_name_cbs"].replace( | ||
r"\s+", " ", regex=True | ||
) | ||
df_total["road_names_matches"] = ( | ||
df_total["road_segment_name_cbs"] == df_total["road_segment_name"] | ||
) | ||
df_total["2020_match"] = df_total["2020_cbs"] == df_total["2020_anyway"] | ||
df_total["2021_match"] = df_total["2021_cbs"] == df_total["2021_anyway"] | ||
df_total["2022_match"] = df_total["2022_cbs"] == df_total["2022_anyway"] | ||
df_total["all_match"] = df_total[["2020_match", "2021_match", "2022_match"]].all(axis=1) | ||
df_total["diff_anyway_cbs"] = df_total[["2020_anyway", "2021_anyway", "2022_anyway"]].sum( | ||
axis=1 | ||
) - df_total[["2020_cbs", "2021_cbs", "2022_cbs"]].sum(axis=1) | ||
|
||
os.makedirs(OUTPUT_DIR, exist_ok=True) | ||
df_total.to_csv(OUTPUT_FILE, index=False) | ||
print(f"Output saved to {OUTPUT_FILE}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
|
||
CBS summary files are from this source and include interurban accidents summary: | ||
https://www.cbs.gov.il/he/publications/Pages/2023/%D7%AA%D7%90%D7%95%D7%A0%D7%95%D7%AA-%D7%93%D7%A8%D7%9B%D7%99%D7%9D-%D7%A2%D7%9D-%D7%A0%D7%A4%D7%92%D7%A2%D7%99%D7%9D-2022-%D7%AA%D7%90%D7%95%D7%A0%D7%95%D7%AA-%D7%91%D7%93%D7%A8%D7%9B%D7%99%D7%9D-%D7%9C%D7%90-%D7%A2%D7%99%D7%A8%D7%95%D7%A0%D7%99%D7%95%D7%AA.aspx |
Oops, something went wrong.