Skip to content

compomics/ML-course-VIB-2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VIB ML course 2024

Based on previous courses by Prof. Sven Degroeve.

This repository contains the Jupyter notebooks for the VIB Machine Learning & Deep Learning Workshop.

Getting started

  • Fork this repository to obtain an editable copy.
  • Start by clicking on the Open in Colab button in each notebook.
  • After editing a notebook, it can be saved to GitHub in your own repository.

Schedule

Day 1

9:00 Introduction to Machine Learning

https://www.youtube.com/watch?v=N9p81OwKI18&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=1&t=1s

10:00 Data fitting

https://www.youtube.com/watch?v=MhXYAAYj69Q&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=2

Some discussion about gradient descent.

Hands on: Hitsone_marks_lr.ipynb section 1

10:45 Break

11:00 Logistic regression

https://www.youtube.com/watch?v=JaoCcC1UIa4&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=3

Introduction to learning platform Kaggle + Histone mark contest

Hands on: Hitsone_marks_lr.ipynb sections 2, 3 and 4

12:15 Lunch

13:15 Model complexity

https://www.youtube.com/watch?v=7JH3kNdai-4&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=4

Hands on: Hitsone_marks_lr.ipynb section 5

14:00 Bias & Variance

https://www.youtube.com/watch?v=5Nvoy7VEuJA&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=5

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Hands on: Hitsone_marks_dt.ipynb

15:00 Kaggle Competition

In this section it is up to you to fit and optimze a classification model, evaluate it, and make predictions on the test set. At this point there should be enough time to help each of you individually.

Day 2

09:00 What is deep learning?

https://www.youtube.com/watch?v=x2FHuttvApE&list=PLv5LrvIzDSWZXAyIJmXgQ-ezCFELN8b5e&index=6

Hands on: https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/classification.ipynb

10:00 Break

10:15 CNNs and RNNs

Hands on: pytorch.ipynb

11:00 Competition

12:15 Lunch

13:15 Deep Generative Models

Hands on: pytorch.ipynb

14:30 Break

14:45 Discussions, Q&A

https://playground.tensorflow.org/

Further learning

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%