-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
502b032
commit 10101b6
Showing
2 changed files
with
288 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
287 changes: 287 additions & 0 deletions
287
integrations/model-training/ray-train/notebooks/Comet_with_ray_train_pytorch_lightning.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<img src=\"https://cdn.comet.ml/img/notebook_logo.png\">" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"[Comet](https://www.comet.com/site/products/ml-experiment-tracking/?utm_campaign=ray_train&utm_medium=colab) is an MLOps Platform that is designed to help Data Scientists and Teams build better models faster! Comet provides tooling to track, Explain, Manage, and Monitor your models in a single place! It works with Jupyter Notebooks and Scripts and most importantly it's 100% free to get started!\n", | ||
"\n", | ||
"[Ray Train](https://docs.ray.io/en/latest/train/train.html) abstracts away the complexity of setting up a distributed training system.\n", | ||
"\n", | ||
"Instrument your runs with Comet to start managing experiments, create dataset versions and track hyperparameters for faster and easier reproducibility and collaboration.\n", | ||
"\n", | ||
"[Find more information about our integration with Ray Train](https://www.comet.ml/docs/v2/integrations/ml-frameworks/ray/)\n", | ||
"\n", | ||
"Get a preview for what's to come. Check out a completed experiment created from this notebook [here](https://www.comet.com/examples/comet-example-ray-train-keras/99d169308c854be7ac222c995a2bfa26?experiment-tab=systemMetrics).\n", | ||
"\n", | ||
"This example is based on the [following Ray Train Lightning example](https://docs.ray.io/en/latest/train/getting-started-pytorch-lightning.html)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "ZYchV5RWwdv5" | ||
}, | ||
"source": [ | ||
"# Install Dependencies" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "DJnmqphuY2eI" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%pip install \"comet_ml>=3.47.1\" \"ray[air]>=2.1.0\" \"lightning\" \"torchvision\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "crOcPHobwhGL" | ||
}, | ||
"source": [ | ||
"# Initialize Comet" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "HNQRM0U3caiY" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import comet_ml\n", | ||
"import comet_ml.integration.ray\n", | ||
"\n", | ||
"comet_ml.login()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "cgqwGSwtzVWD" | ||
}, | ||
"source": [ | ||
"# Import Dependencies" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "e-5rRYaUw5AF" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import tempfile\n", | ||
"\n", | ||
"import torch\n", | ||
"from torch.utils.data import DataLoader\n", | ||
"from torchvision.models import resnet18\n", | ||
"from torchvision.datasets import FashionMNIST\n", | ||
"from torchvision.transforms import ToTensor, Normalize, Compose\n", | ||
"import lightning.pytorch as pl\n", | ||
"\n", | ||
"import ray.train.lightning\n", | ||
"from ray.train.torch import TorchTrainer\n", | ||
"from ray.train import ScalingConfig, RunConfig" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Prepare your model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Model, Loss, Optimizer\n", | ||
"class ImageClassifier(pl.LightningModule):\n", | ||
" def __init__(self):\n", | ||
" super(ImageClassifier, self).__init__()\n", | ||
" self.model = resnet18(num_classes=10)\n", | ||
" self.model.conv1 = torch.nn.Conv2d(\n", | ||
" 1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False\n", | ||
" )\n", | ||
" self.criterion = torch.nn.CrossEntropyLoss()\n", | ||
"\n", | ||
" def forward(self, x):\n", | ||
" return self.model(x)\n", | ||
"\n", | ||
" def training_step(self, batch, batch_idx):\n", | ||
" x, y = batch\n", | ||
" outputs = self.forward(x)\n", | ||
" loss = self.criterion(outputs, y)\n", | ||
" self.log(\"ligthning_loss\", loss, on_step=True, prog_bar=True)\n", | ||
" return loss\n", | ||
"\n", | ||
" def configure_optimizers(self):\n", | ||
" return torch.optim.Adam(self.model.parameters(), lr=0.001)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "TJuThf1TxP_G" | ||
}, | ||
"source": [ | ||
"# Define your distributed training function\n", | ||
"\n", | ||
"This function is gonna be distributed and executed on each distributed worker." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train_func(config):\n", | ||
" from comet_ml.integration.ray import comet_worker_logger\n", | ||
" from lightning.pytorch.loggers import CometLogger\n", | ||
"\n", | ||
" with comet_worker_logger(config) as experiment:\n", | ||
" # Data\n", | ||
" transform = Compose([ToTensor(), Normalize((0.5,), (0.5,))])\n", | ||
" data_dir = os.path.join(tempfile.gettempdir(), \"data\")\n", | ||
" train_data = FashionMNIST(\n", | ||
" root=data_dir, train=True, download=True, transform=transform\n", | ||
" )\n", | ||
" train_dataloader = DataLoader(train_data, batch_size=128, shuffle=True)\n", | ||
"\n", | ||
" # Training\n", | ||
" model = ImageClassifier()\n", | ||
"\n", | ||
" comet_logger = CometLogger()\n", | ||
"\n", | ||
" # Temporary workaround, can be removed once\n", | ||
" # https://github.com/Lightning-AI/pytorch-lightning/pull/20275 has\n", | ||
" # been merged and released\n", | ||
" comet_logger._experiment = experiment\n", | ||
"\n", | ||
" # [1] Configure PyTorch Lightning Trainer.\n", | ||
" trainer = pl.Trainer(\n", | ||
" max_epochs=config[\"epochs\"],\n", | ||
" devices=\"auto\",\n", | ||
" accelerator=\"auto\",\n", | ||
" strategy=ray.train.lightning.RayDDPStrategy(),\n", | ||
" plugins=[ray.train.lightning.RayLightningEnvironment()],\n", | ||
" callbacks=[ray.train.lightning.RayTrainReportCallback()],\n", | ||
" logger=comet_logger,\n", | ||
" # [1a] Optionally, disable the default checkpointing behavior\n", | ||
" # in favor of the `RayTrainReportCallback` above.\n", | ||
" enable_checkpointing=False,\n", | ||
" log_every_n_steps=2,\n", | ||
" )\n", | ||
" trainer = ray.train.lightning.prepare_trainer(trainer)\n", | ||
" trainer.fit(model, train_dataloaders=train_dataloader)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Define the function that schedule the distributed job" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train(num_workers: int = 2, use_gpu: bool = False, epochs=1):\n", | ||
" scaling_config = ScalingConfig(num_workers=num_workers, use_gpu=use_gpu)\n", | ||
" config = {\"use_gpu\": use_gpu, \"epochs\": epochs}\n", | ||
"\n", | ||
" callback = comet_ml.integration.ray.CometTrainLoggerCallback(\n", | ||
" config, project_name=\"comet-example-ray-train-pytorch-lightning\"\n", | ||
" )\n", | ||
"\n", | ||
" ray_trainer = TorchTrainer(\n", | ||
" train_func,\n", | ||
" scaling_config=scaling_config,\n", | ||
" train_loop_config=config,\n", | ||
" run_config=RunConfig(callbacks=[callback]),\n", | ||
" )\n", | ||
" result = ray_trainer.fit()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Train the model\n", | ||
"\n", | ||
"Ray will wait indefinitely if we request more num_workers that the available resources, the code below ensure we never request more CPU than available locally." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ideal_num_workers = 2\n", | ||
"\n", | ||
"available_local_cpu_count = os.cpu_count() - 1\n", | ||
"num_workers = min(ideal_num_workers, available_local_cpu_count)\n", | ||
"\n", | ||
"if num_workers < 1:\n", | ||
" num_workers = 1\n", | ||
"\n", | ||
"train(num_workers, use_gpu=False, epochs=3)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"comet_ml.end()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |