Skip to content
This repository has been archived by the owner on Jan 13, 2025. It is now read-only.

Commit

Permalink
Added & enabled portblas, cublas & rocblas benchmarks for complex GEMM
Browse files Browse the repository at this point in the history
  • Loading branch information
OuadiElfarouki committed Oct 23, 2023
1 parent 6a0e010 commit 3e3d4dc
Show file tree
Hide file tree
Showing 16 changed files with 2,182 additions and 14 deletions.
8 changes: 8 additions & 0 deletions benchmark/cublas/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -74,12 +74,20 @@ set(sources
extension/omatadd.cpp
)

# Operators supporting COMPLEX types benchmarking
set(CPLX_OPS "gemm" "gemm_batched" "gemm_batched_strided")

# Add individual benchmarks for each method
foreach(cublas_bench ${sources})
get_filename_component(bench_cublas_exec ${cublas_bench} NAME_WE)
add_executable(bench_cublas_${bench_cublas_exec} ${cublas_bench} main.cpp)
target_link_libraries(bench_cublas_${bench_cublas_exec} PRIVATE benchmark CUDA::toolkit CUDA::cublas CUDA::cudart portblas Clara::Clara bench_info)
target_compile_definitions(bench_cublas_${bench_cublas_exec} PRIVATE -DBLAS_INDEX_T=${BLAS_BENCHMARK_INDEX_TYPE})
if(${BLAS_ENABLE_COMPLEX})
if("${bench_cublas_exec}" IN_LIST CPLX_OPS)
target_compile_definitions(bench_cublas_${bench_cublas_exec} PRIVATE BLAS_ENABLE_COMPLEX=1)
endif()
endif()
add_sycl_to_target(
TARGET bench_cublas_${bench_cublas_exec}
SOURCES ${cublas_bench}
Expand Down
168 changes: 168 additions & 0 deletions benchmark/cublas/blas3/gemm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,18 @@ static inline void cublas_routine(args_t&&... args) {
return;
}

#ifdef BLAS_ENABLE_COMPLEX
template <typename scalar_t, typename... args_t>
static inline void cublas_cplx_routine(args_t&&... args) {
if constexpr (std::is_same_v<scalar_t, float>) {
CUBLAS_CHECK(cublasCgemm(std::forward<args_t>(args)...));
} else if constexpr (std::is_same_v<scalar_t, double>) {
CUBLAS_CHECK(cublasZgemm(std::forward<args_t>(args)...));
}
return;
}
#endif

template <typename scalar_t>
void run(benchmark::State& state, cublasHandle_t* cuda_handle_ptr, int t1,
int t2, index_t m, index_t k, index_t n, scalar_t alpha, scalar_t beta,
Expand Down Expand Up @@ -168,6 +180,162 @@ void register_benchmark(blas_benchmark::Args& args,
}
}

#ifdef BLAS_ENABLE_COMPLEX
template <typename scalar_t>
using cudaComplex = typename std::conditional<sizeof(scalar_t) == 8,
cuDoubleComplex, cuComplex>::type;

template <typename scalar_t>
void run(benchmark::State& state, cublasHandle_t* cuda_handle_ptr, int t1,
int t2, index_t m, index_t k, index_t n, std::complex<scalar_t> alpha,
std::complex<scalar_t> beta, bool* success) {
// initialize the state label
blas_benchmark::utils::set_benchmark_label<std::complex<scalar_t>>(state);

// Standard test setup.
std::string t1s = blas_benchmark::utils::from_transpose_enum(
static_cast<blas_benchmark::utils::Transposition>(t1));
std::string t2s = blas_benchmark::utils::from_transpose_enum(
static_cast<blas_benchmark::utils::Transposition>(t2));
const char* t_a = t1s.c_str();
const char* t_b = t2s.c_str();

index_t lda = t_a[0] == 'n' ? m : k;
index_t ldb = t_b[0] == 'n' ? k : n;
index_t ldc = m;

blas_benchmark::utils::init_level_3_cplx_counters<
blas_benchmark::utils::Level3Op::gemm, scalar_t>(state, beta, m, n, k,
static_cast<index_t>(1));

cublasHandle_t& cuda_handle = *cuda_handle_ptr;

// Matrices
std::vector<std::complex<scalar_t>> a =
blas_benchmark::utils::random_cplx_data<scalar_t>(m * k);
std::vector<std::complex<scalar_t>> b =
blas_benchmark::utils::random_cplx_data<scalar_t>(k * n);
std::vector<std::complex<scalar_t>> c =
blas_benchmark::utils::const_cplx_data<scalar_t>(m * n, 0);

blas_benchmark::utils::CUDAVector<cudaComplex<scalar_t>> a_gpu(
m * k, reinterpret_cast<cudaComplex<scalar_t>*>(a.data()));
blas_benchmark::utils::CUDAVector<cudaComplex<scalar_t>> b_gpu(
k * n, reinterpret_cast<cudaComplex<scalar_t>*>(b.data()));
blas_benchmark::utils::CUDAVector<cudaComplex<scalar_t>> c_gpu(
n * m, reinterpret_cast<cudaComplex<scalar_t>*>(c.data()));

cublasOperation_t c_t_a = (*t_a == 'n') ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t c_t_b = (*t_b == 'n') ? CUBLAS_OP_N : CUBLAS_OP_T;

cudaComplex<scalar_t> cuBeta{beta.real(), beta.imag()};
cudaComplex<scalar_t> cuAlpha{alpha.real(), alpha.imag()};

#ifdef BLAS_VERIFY_BENCHMARK
// Run a first time with a verification of the results
std::vector<std::complex<scalar_t>> c_ref = c;

reference_blas::cgemm<scalar_t>(t_a, t_b, m, n, k,
reinterpret_cast<const void*>(&alpha),
reinterpret_cast<const void*>(a.data()), lda,
reinterpret_cast<const void*>(b.data()), ldb,
reinterpret_cast<const void*>(&beta),
reinterpret_cast<void*>(c_ref.data()), ldc);
std::vector<std::complex<scalar_t>> c_temp = c;
{
blas_benchmark::utils::CUDAVector<cudaComplex<scalar_t>, true> c_temp_gpu(
m * n, reinterpret_cast<cudaComplex<scalar_t>*>(c_temp.data()));
cublas_cplx_routine<scalar_t>(cuda_handle, c_t_a, c_t_b, m, n, k, &cuAlpha,
a_gpu, lda, b_gpu, ldb, &cuBeta, c_temp_gpu,
ldc);
}

std::ostringstream err_stream;
if (!utils::compare_vectors(c_temp, c_ref, err_stream, "")) {
const std::string& err_str = err_stream.str();
state.SkipWithError(err_str.c_str());
*success = false;
};
#endif
auto blas_warmup = [&]() -> void {
cublas_cplx_routine<scalar_t>(cuda_handle, c_t_a, c_t_b, m, n, k, &cuAlpha,
a_gpu, lda, b_gpu, ldb, &cuBeta, c_gpu, ldc);
return;
};

cudaEvent_t start;
cudaEvent_t stop;
CUDA_CHECK(cudaEventCreate(&start));
CUDA_CHECK(cudaEventCreate(&stop));

auto blas_method_def = [&]() -> std::vector<cudaEvent_t> {
CUDA_CHECK(cudaEventRecord(start));
cublas_cplx_routine<scalar_t>(cuda_handle, c_t_a, c_t_b, m, n, k, &cuAlpha,
a_gpu, lda, b_gpu, ldb, &cuBeta, c_gpu, ldc);
CUDA_CHECK(cudaEventRecord(stop));
CUDA_CHECK(cudaEventSynchronize(stop));
return std::vector{start, stop};
};

// Warmup
blas_benchmark::utils::warmup(blas_warmup);
CUDA_CHECK(cudaStreamSynchronize(NULL));

blas_benchmark::utils::init_counters(state);

// Measure
for (auto _ : state) {
// Run
std::tuple<double, double> times =
blas_benchmark::utils::timef_cuda(blas_method_def);

// Report
blas_benchmark::utils::update_counters(state, times);
}

state.SetItemsProcessed(state.iterations() * state.counters["n_fl_ops"]);
state.SetBytesProcessed(state.iterations() *
state.counters["bytes_processed"]);

blas_benchmark::utils::calc_avg_counters(state);

CUDA_CHECK(cudaEventDestroy(start));
CUDA_CHECK(cudaEventDestroy(stop));
};

template <typename scalar_t>
void register_cplx_benchmark(blas_benchmark::Args& args,
cublasHandle_t* cuda_handle_ptr, bool* success) {
auto gemm_params =
blas_benchmark::utils::get_blas3_cplx_params<scalar_t>(args);
for (auto p : gemm_params) {
std::string t1s, t2s;
index_t m, n, k;
scalar_t alpha_r, alpha_i, beta_r, beta_i;

std::tie(t1s, t2s, m, k, n, alpha_r, alpha_i, beta_r, beta_i) = p;
int t1 = static_cast<int>(blas_benchmark::utils::to_transpose_enum(t1s));
int t2 = static_cast<int>(blas_benchmark::utils::to_transpose_enum(t2s));
std::complex<scalar_t> alpha{alpha_r, alpha_i};
std::complex<scalar_t> beta{beta_r, beta_i};

auto BM_lambda = [&](benchmark::State& st, cublasHandle_t* cuda_handle_ptr,
int t1, int t2, index_t m, index_t k, index_t n,
std::complex<scalar_t> alpha,
std::complex<scalar_t> beta, bool* success) {
run<scalar_t>(st, cuda_handle_ptr, t1, t2, m, k, n, alpha, beta, success);
};
benchmark::RegisterBenchmark(
blas_benchmark::utils::get_name<benchmark_op, std::complex<scalar_t>>(
t1s, t2s, m, k, n, blas_benchmark::utils::MEM_TYPE_USM)
.c_str(),
BM_lambda, cuda_handle_ptr, t1, t2, m, k, n, alpha, beta, success)
->UseRealTime();
}
}

#endif

namespace blas_benchmark {
void create_benchmark(blas_benchmark::Args& args,
cublasHandle_t* cuda_handle_ptr, bool* success) {
Expand Down
Loading

0 comments on commit 3e3d4dc

Please sign in to comment.