Skip to content

Commit

Permalink
predict overridden in rhvae (#98)
Browse files Browse the repository at this point in the history
* predict overridden in rhvae

* rhvae predict corrected

---------

Co-authored-by: soumick.chatterjee <[email protected]>
  • Loading branch information
soumickmj and soumick.chatterjee authored Jul 19, 2023
1 parent 7c4eb6b commit 4844790
Showing 1 changed file with 66 additions and 0 deletions.
66 changes: 66 additions & 0 deletions src/pythae/models/rhvae/rhvae_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,72 @@ def forward(self, inputs: BaseDataset, **kwargs) -> ModelOutput:

return output

def predict(self, inputs: torch.Tensor) -> ModelOutput:
"""The input data is encoded and decoded without computing loss
Args:
inputs (torch.Tensor): The input data to be reconstructed, as well as to generate the embedding.
Returns:
ModelOutput: An instance of ModelOutput containing reconstruction, raw embedding (output of encoder), and the final embedding (output of metric)
"""
encoder_output = self.encoder(inputs)
mu, log_var = encoder_output.embedding, encoder_output.log_covariance

std = torch.exp(0.5 * log_var)
z0, _ = self._sample_gauss(mu, std)

z = z0

G = self.G(z)
G_inv = self.G_inv(z)
L = torch.linalg.cholesky(G)

G_log_det = -torch.logdet(G_inv)

gamma = torch.randn_like(z0, device=inputs.device)
rho = gamma / self.beta_zero_sqrt
beta_sqrt_old = self.beta_zero_sqrt

# sample \rho from N(0, G)
rho = (L @ rho.unsqueeze(-1)).squeeze(-1)

recon_x = self.decoder(z)["reconstruction"]

for k in range(self.n_lf):

# perform leapfrog steps

# step 1
rho_ = self._leap_step_1(recon_x, inputs, z, rho, G_inv, G_log_det)

# step 2
z = self._leap_step_2(recon_x, inputs, z, rho_, G_inv, G_log_det)

recon_x = self.decoder(z)["reconstruction"]

# compute metric value on new z using final metric
G = self.G(z)
G_inv = self.G_inv(z)

G_log_det = -torch.logdet(G_inv)

# step 3
rho__ = self._leap_step_3(recon_x, inputs, z, rho_, G_inv, G_log_det)

# tempering
beta_sqrt = self._tempering(k + 1, self.n_lf)
rho = (beta_sqrt_old / beta_sqrt) * rho__
beta_sqrt_old = beta_sqrt

output = ModelOutput(
recon_x=recon_x,
raw_embedding=encoder_output.embedding,
embedding=z if self.n_lf > 0 else encoder_output.embedding,
)

return output

def _leap_step_1(self, recon_x, x, z, rho, G_inv, G_log_det, steps=3):
"""
Resolves first equation of generalized leapfrog integrator
Expand Down

0 comments on commit 4844790

Please sign in to comment.