- Load Velodyne lidar points from KITTI dataset.
- Perform G-ICP on the LiDAR points.
- Perform NDT on the LiDAR points.
- Perform TEASER++ on the LiDAR points.
Requirement: PCL, TEASER++
mkdir build && cd build
cmake ..
make -j
./gicp /data/kitti/sequences/00/velodyne
./ndt /data/kitti/sequences/00/velodyne
./teaser_plus_plus
Requires base build
docker build . -t slam:4_8
docker run -it --env DISPLAY=$DISPLAY -v /kitti:/data/ -v /tmp/.X11-unix/:/tmp/.X11-unix:ro slam:4_8
# Inside docker container
cd fastcampus_slam_codes/4_8
./gicp /data/sequences/00/velodyne
./ndt /data/sequences/00/velodyne
./teaser_plus_plus
Red: Target point cloud Green: Transformed point cloud (Not really visible, as the points lie behind the target point cloud)
If you can see green point clouds, it would actually mean that the registration has not worked perfectly.
Original repo: https://github.com/SMRT-AIST/fast_gicp
docker build . -f Dockerfile_fast_gicp -t slam:fast_gicp
xhost +local:docker
docker run -it --env DISPLAY=$DISPLAY -v /kitti:/data -v /tmp/.X11-unix/:/tmp/.X11-unix:ro slam:fast_gicp
# Inside docker container
cd fast_gicp/build
./gicp_kitti /data/sequences/00/velodyne
docker build . -f Dockerfile_fast_gicp_cuda -t slam:fast_gicp_cuda
xhost +local:docker
docker run -it --env DISPLAY=$DISPLAY --privileged --runtime nvidia --gpus all -v /kitti:/data -v /tmp/.X11-unix/:/tmp/.X11-unix:ro slam:fast_gicp_cuda
# Inside docker container
cd fast_gicp/
vim src/kitti.cpp (And edit code line 86-91 to select your algorihtm)
cd build
make -j
./gicp_kitti /data/sequences/00/velodyne