-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add xception model file
- Loading branch information
Showing
4 changed files
with
176 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
#coding=GB18030 | ||
|
||
from math import ceil | ||
import numpy as np | ||
import time | ||
from keras.applications import Xception | ||
from keras.applications.inception_v3 import InceptionV3 | ||
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping | ||
from keras.layers import Dense, Dropout | ||
from keras.models import Model | ||
from keras.optimizers import * | ||
from utils_dist import SGDRScheduler, CustomModelCheckpoint, SequenceData | ||
from keras.callbacks import TensorBoard | ||
from keras.utils import training_utils | ||
from keras.utils import multi_gpu_model | ||
from keras.preprocessing.image import ImageDataGenerator | ||
import tensorflow as tf | ||
|
||
import os | ||
#os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1' | ||
|
||
np.random.seed(1024) | ||
|
||
NBR_MODELS = 500 | ||
|
||
FINE_TUNE = False | ||
warmup_epochs = 1 | ||
base_lr = 0.0125 | ||
momentum = 0.9 | ||
LEARNING_RATE = 0.0005 | ||
NBR_EPOCHS = 1500 | ||
BATCH_SIZE = 32 | ||
IMG_WIDTH = 299 | ||
IMG_HEIGHT = 299 | ||
monitor_index = 'val_acc' | ||
USE_CLASS_WEIGHTS = False | ||
RANDOM_SCALE = True | ||
encoding = "gbk" | ||
resume_from_epoch = 0 | ||
|
||
train_path = '/data/work_image/train_file/' | ||
val_path = '/data/work_image/val_file/' | ||
train_file_list = './data/500/train_file_796.txt' | ||
val_file_list = './data/500/val_file_796.txt' | ||
new_classes = '' | ||
best_model_path = "./data/500/" | ||
best_model_file = "" | ||
last_mt_time = 0 | ||
##get the last modify h5 file | ||
for maindir, subdirs, file_name_list in os.walk(best_model_path): | ||
for file in file_name_list: | ||
if file.find('.h5') == -1: | ||
continue | ||
|
||
mt_time = os.path.getmtime(os.path.join(maindir, file)) | ||
if last_mt_time < mt_time: | ||
last_mt_time = mt_time | ||
best_model_file = os.path.join(maindir, file) | ||
FINE_TUNE = True | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
# Pin a server GPU to be used by this process | ||
|
||
config = tf.ConfigProto() | ||
config.gpu_options.allow_growth = True | ||
config.gpu_options.per_process_gpu_memory_fraction = 0.9 | ||
K.set_session(tf.Session(config=config)) | ||
|
||
# ['/job:localhost/replica:0/task:0/device:CPU:0', '/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1'] | ||
nbr_gpus = len(training_utils._get_available_devices()) - 1 | ||
|
||
verbose = 1 | ||
resume_from_epoch = 0 | ||
|
||
train_datagen = ImageDataGenerator( | ||
rescale=1./255, | ||
shear_range=0.2, | ||
width_shift_range=0.4, | ||
height_shift_range=0.4, | ||
rotation_range=90, | ||
zoom_range=0.7, | ||
horizontal_flip=True, | ||
vertical_flip=True) | ||
test_datagen = ImageDataGenerator(rescale=1./255) | ||
|
||
train_generator = train_datagen.flow_from_directory( | ||
train_path, | ||
target_size=(299,299), | ||
batch_size=BATCH_SIZE, | ||
class_mode='categorical') | ||
|
||
val_generator = test_datagen.flow_from_directory( | ||
val_path, | ||
target_size=(299,299), | ||
batch_size=BATCH_SIZE, | ||
class_mode='categorical') | ||
|
||
|
||
print('Loading Xception Weights ...') | ||
with tf.device('/cpu:0'): | ||
xception_path = 'xception_model/xception_weights_tf_dim_ordering_tf_kernels_notop.h5' | ||
inception = Xception(include_top=False, weights=xception_path, | ||
input_tensor=None, input_shape=(IMG_WIDTH, IMG_HEIGHT, 3), pooling='avg') | ||
output = inception.get_layer(index=-1).output | ||
output = Dropout(0.5)(output) | ||
output = Dense(NBR_MODELS, activation='softmax', name='predictions')(output) | ||
for layer in inception.layers: | ||
layer.trainable = False | ||
model = Model(outputs=output, inputs=inception.input) | ||
|
||
if FINE_TUNE: | ||
print('Loading Xception Weights in file %s' % best_model_file) | ||
#model = multi_gpu_model(model, gpus=2) | ||
model.load_weights(best_model_file) | ||
|
||
if new_classes: | ||
with open(new_classes) as f: | ||
NBR_MODELS = len(f.readlines()) | ||
|
||
f.close() | ||
print('use fine tune.....') | ||
output = model.get_layer(index=-2).output | ||
output = Dense(NBR_MODELS, activation='softmax', name='predictions')(output) | ||
model = Model(outputs=output, inputs=inception.input) | ||
|
||
print('Training model begins...') | ||
|
||
optimizer = SGD(lr=LEARNING_RATE , momentum=0.9, decay=0.0, nesterov=True) | ||
# optimizer = Adam(lr=LEARNING_RATE, beta_1=0.9, beta_2=0.999, epsilon=1e-8) | ||
# optimizer = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004) | ||
|
||
|
||
#model = multi_gpu_model(model, gpus=2) #若使用多GPU训练则去掉注释 | ||
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) | ||
|
||
out_model_name = best_model_path + 'Xception_bestmodel_' + time.strftime('%y%m%d', time.localtime()) + "_500.h5" | ||
best_model = CustomModelCheckpoint(model, out_model_name, monitor_index=monitor_index) | ||
reduce_lr = ReduceLROnPlateau(monitor=monitor_index, factor=0.5, patience=10, verbose=1, min_lr=0) | ||
early_stop = EarlyStopping(monitor=monitor_index, patience=5, verbose=1, min_delta=0.001) | ||
|
||
try: | ||
train_data_lines = open(train_file_list, 'r', encoding=encoding).readlines() | ||
except UnicodeDecodeError: | ||
train_data_lines = open(train_file_list, 'r', encoding='UTF-8').readlines() | ||
node_nbr_train = len(train_data_lines) | ||
print('# Train Images: {}.'.format(node_nbr_train)) | ||
steps_per_epoch = int(ceil(node_nbr_train / BATCH_SIZE)) | ||
|
||
try: | ||
val_data_lines = open(val_file_list, 'r', encoding=encoding).readlines() | ||
except UnicodeDecodeError: | ||
val_data_lines = open(val_file_list, 'r', encoding='UTF-8').readlines() | ||
node_nbr_val = len(val_data_lines) | ||
print('# Val Images: {}.'.format(node_nbr_val)) | ||
validation_steps = int(ceil(node_nbr_val / BATCH_SIZE)) | ||
|
||
gpu_device_name = tf.test.gpu_device_name() | ||
print('gpu_device_name:',gpu_device_name) | ||
|
||
callbacks = list() | ||
callbacks.append(reduce_lr) | ||
callbacks.append(best_model) | ||
callbacks.append(early_stop) | ||
callbacks.append(TensorBoard(log_dir='./tb_log')) | ||
|
||
model.fit_generator(train_generator, | ||
steps_per_epoch=steps_per_epoch, | ||
epochs=NBR_EPOCHS, verbose=verbose, | ||
validation_data=val_generator, | ||
validation_steps=validation_steps, | ||
callbacks=callbacks, | ||
shuffle=True, | ||
max_queue_size=128, workers=4, use_multiprocessing=True) | ||
|