-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
231 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"source": [ | ||
"# Scales\n", | ||
"* We're going to talk about things you probably learned in grade school but also probably don't think about much\n", | ||
"* And of course, we're going to talk about them in Pandas!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Let's look at some letter grades...\n", | ||
"import pandas as pd\n", | ||
"df=pd.DataFrame(['A+', 'A', 'A-', 'B+', 'B', 'B-', 'C+', 'C', 'C-', 'D+', 'D'],\n", | ||
" index=['excellent', 'excellent', 'excellent', 'good', 'good', 'good', \n", | ||
" 'ok', 'ok', 'ok', 'poor', 'poor'],\n", | ||
" columns=[\"Grades\"])\n", | ||
"df" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# What is our series datatype?\n", | ||
"df.dtypes" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "subslide" | ||
} | ||
}, | ||
"source": [ | ||
"* That seems pretty broad, eh? \"object\" pretty much means anything...\n", | ||
"* We know more here. We have clear categories that have meaning to us as people. We can put this meaning into pandas `DataFrame` objects" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# We can use the astype() function to tell pandas to mark this as a category\n", | ||
"df[\"Grades\"].astype(\"category\").head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "subslide" | ||
} | ||
}, | ||
"source": [ | ||
"* Notice that there are now 11 categories!\n", | ||
"* But actually, our data isn't really categorical, is it? What else do we know about this data?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# We can tell pandas that the data is ordered by first creating our own data type\n", | ||
"my_categories=pd.CategoricalDtype(categories=['D', 'D+', 'C-', 'C', 'C+', 'B-', 'B', 'B+', 'A-', 'A', 'A+'], \n", | ||
" ordered=True)\n", | ||
"# then we just pass this to the astype() function\n", | ||
"grades=df[\"Grades\"].astype(my_categories)\n", | ||
"grades.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Now we can do ordinal comparisons! Look at the bad example first (no category original dataframe)\n", | ||
"df[df[\"Grades\"]>\"C\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Now how's that look in a category aware sense?\n", | ||
"grades[grades>\"C\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"source": [ | ||
"* Great! So we can encapsulate a limited set of data types (categories) and an ordering if appropriate (through our own dtype) in pandas and it allows us to do operations we otherwise couldn't do\n", | ||
"* Now, it turns out we use this in machine learning and data mining a fair bit. Some techniques (regression) are used to predict continuous values, while others (classification) are used to predict categories\n", | ||
"* So how do we change from continuous data to categorical data in pandas? I'm glad you asked!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Let's look at that census data\n", | ||
"import numpy as np\n", | ||
"df=pd.read_csv(\"datasets/census.csv\")\n", | ||
"df=df[df['SUMLEV']==50]\n", | ||
"df=df.set_index('STNAME').groupby(level=0)['CENSUS2010POP'].agg(np.average)\n", | ||
"df.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Now if we just want to make \"bins\" of each of these, we can use cut()\n", | ||
"# this just takes the dataframe, and the number of bins, and returns a new dataframe\n", | ||
"df=pd.cut(df,10)\n", | ||
"df.head()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "slide" | ||
} | ||
}, | ||
"source": [ | ||
"* Notice the notation is mathematical (open/closed intervals)\n", | ||
"* See how Alabama and Alaska are now in the same category, but Arizon is in another category\n", | ||
"* Notice that pandas ordered all of these now too\n", | ||
"* What happens if we want to add a new value into the mix?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"slideshow": { | ||
"slide_type": "subslide" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"df.loc[\"Canada\"]=50000\n", | ||
"df.tail()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"celltoolbar": "Slideshow", | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |